Skip to main content

Jason Stofleth, former student in the laboratory of Dr. William A. Cramer

09-17-2012

Understanding Free Radicals: Isolating Active Thylakoid Membranes and Purifying the Cytochrome b6f Complex for Superoxide Generation Studies

 

Jason Stofleth - Cramer Lab

Abstract

All life persists in an environment that is rich in molecular oxygen. The production of oxygen free radicals, or superoxide, is a necessary consequence of the biogenesis of energy in cells. Both mitochondrial and photosynthetic electron transport chains have been found to produce superoxide associated with cell differentiation, proliferation, and cell death, thereby contributing to the effects of aging. Aerobic respiration in mitochondria consumes oxygen, whereas photosynthesis in chloroplasts or cyanobacteria produces oxygen. The increased concentration of molecular oxygen may serve to allow greater availability for the production of superoxide by cytochrome bc complexes in photosynthetic membranes compared to those of mitochondrial membranes. The isolation of well-coupled chloroplasts, containing the cytochrome b6f complex of oxygenic photosynthesis, is a vital initial step in the process of comparing the rate of production of superoxide to those of the homologous cytochrome bc1 complex of aerobic respiration. It is necessary to determine if the isolated chloroplasts have retained their oxygengenerating capability after isolation by an oxygen evolution assay with a Clark-type electrode. A necessary second step, which is the isolation of cytochrome b6f from spinach, has yet to be successfully performed. Oxygen measurements taken from chloroplasts in the presence of the uncoupler, NH4Cl, exhibited a rate of oxygen evolution over three times greater at 344 +/- 18 μmol O2/mg Chlorophyll a/hr than the rate of oxygen evolution without uncoupler at 109 +/- 29 μmol O2/mg Chlorophyll a/hr. These data demonstrate that the technique used to isolate spinach chloroplasts preserves their light-driven electron-transport activity, making them reliable for future superoxide assays.

Recommended Citation

Stofleth, Jason (2012) "Understanding Free Radicals: Isolating Active Thylakoid Membranes and Purifying the Cytochrome b6f Complex for Superoxide Generation Studies," The Journal of Purdue Undergraduate Research: Vol. 2, Article 11.
DOI: 10.5703/jpur.02.1.10

(This article originally appeared in the Purdue University Journal of Undergraduate Research.)

Purdue University Biological Sciences, 915 Mitch Daniels Boulevard, West Lafayette, IN 47907

Main Office: (765) 494-4408   Business Office: (765) 494-4764  Contact Us

© 2024 Purdue University | An equal access/equal opportunity university | Copyright Complaints

Trouble with this page? Disability-related accessibility issue? Please contact the College of Science Webmaster.

Maintained by Science IT