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Among the emerging renewable and green energy sources, biohydrogen stands out as an 
appealing choice. Hydrogen can be produced by certain groups of microorganisms that 
possess functional nitrogenase and/or bidirectional hydrogenases. In particular, the potential 
of photobiological hydrogen production by oxygenic photosynthetic microbes has attracted 
significant interest. However, nitrogenase and hydrogenase are generally oxygen sensitive, 
and require protective mechanisms to function in an aerobic extracellular environment. Here, 
we describe Cyanothece sp. ATCC 51142, a unicellular, diazotrophic cyanobacterium with the 
capacity to generate high levels of hydrogen under aerobic conditions. Wild-type Cyanothece 
51142 can produce hydrogen at rates as high as 465 µmol per mg of chlorophyll per hour in the 
presence of glycerol. Hydrogen production in this strain is mediated by an efficient nitrogenase 
system, which can be manipulated to convert solar energy into hydrogen at rates that are 
several fold higher, compared with any previously described wild-type hydrogen-producing 
photosynthetic microbe. 
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Microbial H2 production relies on either photosynthetic 
or fermentative processes. Economic feasibility stud-
ies suggest that a direct and efficient conversion of solar 

energy to H2 in a carbon-neutral way is necessary for the process 
to be commercially viable1,2. Several photosynthetic microalgal 
and bacterial species possessing nitrogenase and/or hydrogenase 
enzymes are being studied as prospective model organisms for pho-
tobiological H2 production3–5. Outstanding among them are Rhodo­
pseudomonas palustris, a purple photosynthetic, nitrogen-fixing 
bacterium; Chlamydomonas reinhardtii, a green eukaryotic alga; as 
well as Anabaena and Synechocystis, members of the cyanobacterial 
group. High specific rates of nitrogenase-mediated H2 production 
have been reported for R. palustris6. However, R. palustris performs 
anoxygenic photosynthesis, thereby requiring an anaerobic environ-
ment for photobiological H2 production7–9. Anabaena, a filamentous 
diazotrophic cyanobacterial strain, produces H2 in heterocysts, spe-
cialized N2-fixing cells, which maintain a microaerobic environ-
ment to protect the oxygen-sensitive nitrogenase enzyme. However, 
the low frequency of heterocysts in a filament (about one in ten cells 
normally differentiates into heterocysts10) consequently results in  
modest yields of net H2 production. In contrast, H2 production in  
C. reinhardtii and Synechocystis sp. PCC 6803 is mediated by hydro-
genase enzymes, and H2 production can be achieved in both of these 
organisms only under strictly anaerobic conditions11–13. Although 
these strains have long been used as model organisms to study bio-
hydrogen production, the importance of selecting additional novel 
and native strains with diverse energy conversion systems that 
might have evolved as a consequence of specific ecological pressure 
has often been emphasized1,14. A recent effort in this direction has 
identified ten native N2-fixing, heterocystous cyanobacterial strains 
that exhibit higher rates of H2 production compared with some of 
the previously studied mutant strains15.

In the present report, we describe Cyanothece sp. ATCC 51142, 
a cyanobacterial strain with the ability to produce remarkably high 
amounts of H2 under aerobic conditions. Cyanothece strains thrive 
in marine environments limited in dissolved inorganic bioavailable 
nitrogenous compounds, and have been recognized for their role in 
maintaining the marine nitrogen cycle16–18. Cyanothece 51142 can 
derive the majority of its nutritional requirements from sunlight, 
atmospheric carbon dioxide and nitrogen gases (Fig. 1). During the 
day, it performs photosynthesis and fixes carbon, which is stored as 
large reserves of glycogen19. At the onset of the dark period, high 
rates of respiration rapidly create a suboxic intracellular environ-
ment. This, in turn, facilitates oxygen-sensitive and energy-inten-
sive processes such as N2 fixation and H2 production to occur at 
night at the expense of the accumulated glycogen. The orchestrated 
diurnal cycling patterns of the central metabolic processes in this 
organism have recently been described using a global transcrip-
tomic approach20. These unique attributes of Cyanothece 51142, 
which make it an ideal organism for H2 production, are possibly the 
remnants of the metabolic and regulatory processes that aided in 
the acclimatization of ancient cyanobacteria during their transition 
from an anaerobic to an aerobic environment. Retention of ancient 
metabolic traits that originated in the Archaean oceans has been 
reported in other cyanobacterial strains21.

Results
A two-stage system for photobiological H2 production. We 
developed a two-stage H2 production system in Cyanothece 51142 on 
the basis of our previous knowledge of the diurnal rhythms in this 
unicellular cyanobacterium22,23. The two stages were comprised of a 
growth phase during which cells were allowed to grow aerobically 
under 12 h light/12 h dark cycles, followed by an incubation phase 
during which cells sampled at the end of the 12 h light period were 
incubated in airtight vials under continuous illumination for 12 h. 
During this latter light-incubation period, the physiological activities 

of the cells were in step with the subjective dark condition, thereby 
facilitating N2 fixation and H2 production. At the completion of the 
incubation phase, the headspace of the vials (which contained 100% 
air at the beginning of incubation) was analysed for H2 accumulation. 
We determined that photoautotrophically grown Cyanothece 51142 
exhibited high specific rates of H2 production ( > 150 µmol of H2 per 
mg of chlorophyll per hour (Chl.h) or 2.34 µmol of H2 per mg of 
dry weight per hour) under aerobic incubation conditions (Fig. 2a). 
This is striking, as most unicellular photosynthetic microbial strains 
require a complete anaerobic environment for H2 production24 
(Table 1).

The rates of H2 production in Cyanothece 51142 could be greatly 
enhanced when cells were grown in the presence of additional  
carbon sources, as observed in cultures supplemented with high 
concentrations of CO2, or glycerol (Fig. 2a). Cells grown under CO2-
enriched air and incubated under aerobic conditions could produce 
230 µmol of H2 per mg of Chl.h (Fig. 2a). In fact, a batch culture 
of Cyanothece 51142 cells supplemented with 50 mM glycerol could 
produce more than 900 ml of H2 per litre of culture over a period of 
2 days (Fig. 2b,c) when incubated in constant light under aerobic 
conditions (Fig. 2b). Notably, the kinetics of H2 production under 
these conditions revealed high rates even early in the incubation 
phase when the O2 concentration in the headspace of the vials was 
equivalent to that in air (Fig. 2b), indicating that an intracellular 
anoxic environment facilitates nitrogenase activity during the sub-
jective dark period. The O2 level in the headspace diminished with 
time (Fig. 2b), indicating continued respiratory activities in the 
cells. Moreover, as shown in the next subsection, transcripts of coxA, 
the gene encoding subunit A of the cytochrome c oxidase enzyme 
involved in respiration, were also detected under these condi-
tions. This respiration-induced microaerobic environment was also 
reflected in the dissolved O2 levels in the culture in the incubation 
vials (Fig. 2d). A rapid decline in the dissolved O2 concentration 
was observed at the beginning of the incubation phase, followed by 
periodic oscillations in O2 levels, which corresponded to the respi-
ratory and photosynthetic activity of the cells in the subjective dark 
and light periods, respectively. In comparison with light incubation, 
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Figure 1 | Photobiological H2 production in Cyanothece 51142. A schematic 
diagram showing the process of biohydrogen production by Cyanothece 
51142 cells using solar energy and atmospheric CO2 and/or glycerol. CO2 
is fixed during the day to synthesize glycogen, which serves as an energy 
reserve and electron source for H2 production at night.
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incubation under dark conditions reduced the level of H2 produc-
tion by more than 100-fold, indicating that H2 production in this 
system is driven by light energy, and the high rates observed cannot 
be achieved by dark fermentation of glycerol alone (Fig. 2c).

Additional carbon sources lead to higher glycogen content. We 
assessed the influence of external carbon sources on the cellular 
energy reserves, a critical determinant of nitrogenase activity and H2 
production. The glycogen levels of the cells were compared between 

pre- (I0) and post-incubation (I12) samples collected from cultures 
grown under ambient CO2 (0.03%), under 8% CO2-enriched air, 
and with 50 mM glycerol. Either high CO2 or glycerol enhanced the 
glycogen reserves of the cells (Fig. 3). In ambient and high CO2-
treated cells, the glycogen level diminished at the end of the incu-
bation period, indicating that the endogenous carbon source was 
being used for H2 production (Fig. 2a). In contrast, cells grown in 
the presence of glycerol showed higher levels of glycogen at the end 
of the 12 h-light incubation phase (I12), implying direct utilization 
of glycerol as a source of ATP and reductants by the nitrogenase 
enzyme under this photomixotrophic condition. This is supported 
by the observation that expression of glycogen phosphorylase 
(glgP), a gene involved in glycogen degradation, was also down-
regulated in glycerol-supplemented cells (Fig. 4b). In this context, 
we have recently shown that Cyanothece 51142 uses glycerol as the 
sole carbon source when cells are grown under photomixotrophic 
conditions in the presence of glycerol25.

Hydrogen production is mediated by the nitrogenase enzyme. 
Genome analysis of Cyanothece 51142 revealed the presence of 
both the nitrogenase (Nif) and bidirectional hydrogenase (Hox) 
enzyme systems. Analysis at the transcriptional level revealed that 
hox genes were expressed under both nitrogen-fixing ( − NO3) and 
nitrogen-sufficient ( + NO3) conditions (Fig. 4a), and higher tran-
script abundance could be associated with the dark period under 
both conditions. In contrast, nif genes were expressed only under 
nitrogen-fixing conditions, and, in the absence of any additional 
carbon source, the nif transcripts were strictly associated with the 
dark period (Fig. 4a). High levels of H2 production in Cyanothece 
51142 were detected exclusively under diazotrophic conditions, and 
addition of combined nitrogen to the growth media of nitrogen-fix-
ing cultures resulted in an immediate reduction in the rates of nitro-
gen fixation and simultaneous cessation of H2 production (Fig. 4c). 
These results show that the high rates of H2 production observed 
in Cyanothece 51142 were primarily mediated by the nitrogenase 
enzyme system.

Nitrogenase can be optimized to enhance hydrogen yield. An 
important feature of the nitrogenase enzyme system is the poten-
tial to channel all available electrons towards H2 production in the 
absence of molecular nitrogen26,27. The nitrogenase reaction is also 
resistant to feedback inhibition from accumulated H2 (ref. 28). When 
Cyanothece 51142 cells grown under photoautotrophic conditions 
were incubated under an argon atmosphere (absence of molecular 
nitrogen), a 2- to 3-fold increase ( > 370 µmol of H2 per mg of Chl.h 
or 5.738 µmol of H2 per mg of dry weight per hour) in the yield of H2  
was achieved (Fig. 5, Tables 1 and 2). In addition, production 
rates of up to 467 µmol of H2 per mg of Chl.h were achieved from 
cells grown in glycerol-supplemented media subsequently incu-
bated under argon environment (Fig. 5). These rates are at least an 
order of magnitude higher compared with any other hydrogen- 
producing photosynthetic microbial wild-type strain studied to 
date (Tables 1 and 2).

Discussion
This work describes the use of the wild-type strain of the unicellular 
cyanobacterium Cyanothece 51142 for highly efficient photobiologi-
cal H2 production under natural aerobic conditions. In general, the 
oxygen sensitivity of the enzymes involved in biological H2 pro-
duction makes the use of oxygenic photosynthetic organisms as a 
platform for H2 production an extremely challenging task. Thus, 
until now, photobiological H2 production studies have largely relied 
on artificial interventions, which help to create an anaerobic envi-
ronment. It has been recognized that the use of oxygenic photo-
synthetic microbes that can produce H2 under aerobic conditions 
would be an important step forward for biological H2 production29. 
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Figure 2 | Aerobic H2 production rates and generation of a suboxic 
intracellular environment in Cyanothece 51142. (a) Specific rates of H2 
production by Cyanothece 51142 grown under aerobic, photoautotrophic 
conditions using ambient (0.03%, v/v) or high (8%, v/v) concentrations 
of CO2, and under photomixotrophic growth conditions with glycerol 
(50 mM). Cultures were incubated under aerobic conditions for H2 
production. Each column represents an average of measurements from  
at least three biological replicates. Error bars indicate s.d. values from  
the average. (b) Kinetics of aerobic photobiological H2 production in 
a batch culture of Cyanothece 51142. H2 production (blue) could be  
observed for more than 60 h in vials containing cultures under aerobic 
incubation conditions in the presence of light. The respiratory activities 
of the cells resulted in a gradual decrease in O2 concentration in the 
headspace of the vials (red). Three biological replicates were used for  
the measurements. Error bars indicate s.d. values from the average.  
(c) Comparison of cumulative H2 accumulation in vials with cells under 
light and dark incubation conditions. A volume of 916 ml of H2 per litre of 
culture accumulated in the vials when incubated in the light compared 
with 7 ml of H2 per litre of culture accumulation in the dark. Each column 
represents an average of measurements from at least three biological 
replicates. Error bars indicate s.d. values from the average. (d) Dissolved 
O2 levels in a batch culture of Cyanothece 51142 cells under H2-producing 
conditions. The circadian rhythms of respiratory and photosynthetic 
activities were reflected in the dissolved O2 concentration of the culture. 
The culture was transferred to incubation vials at the beginning of  
the dark period when the dissolved O2 level was about 50% of the 
maximum (assuming 100% equals 230 µM dissolved O2 at 30 °C).  
The O2 concentration reduced starting from the middle of the subjective 
light period (blue line, grey bar), was at its minimum at the middle of the 
subjective dark period (red line, white bar), after which an increase was 
observed because of photosynthetic oxygen evolution. The horizontal bars 
below the x axis denote subjective day (open) and night (filled) periods. 
Three independent biological replicates were used for the measurements. 
Error bars indicate s.d. values from the average.
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Our study has identified Cyanothece 51142 as one such organism 
that has developed an effective strategy to make the best use of a 
diurnal cycle—synthesizing energy-rich storage compounds during 
the day and using it for nitrogen fixation at night when oxygen-con-
suming processes render the interior of the cell anaerobic (or sub-
oxic), while the extracellular environment continues to be oxygen 
rich. This trait of Cyanothece 51142 formed the basis for the physi-
ological perturbations that were designed for our two-stage aerobic 
H2 production process.

Nitrogen fixation is an energy-intensive process, requiring 16 
molecules of ATP for every molecule of nitrogen fixed and H2 pro-
duced19 (Fig. 1). However, the process is of paramount importance 
to diazotrophic species inhabiting ecological niches (such as deep 
oceans) with very low levels of nitrogenous nutrients. Consequently, 
photoautotrophic unicellular strains such as Cyanothece 51142 are 
expected to have evolved effective strategies for collecting and 
storing solar energy, which can be used at night when the energy 
demands are high. Our study shows that Cyanothece 51142 not only 
develops an intracellular environment conducive for the function 
of the nitrogenase enzyme but also generates an adequate supply of 
ATP for this high-energy-requiring process. In addition, our results 
reveal high specific activity of the nitrogenase enzyme in this strain, 
a finding consistent with earlier reports that showed higher rates of 
nitrogen fixation in marine unicellular diazotrophs such as Cyano­
thece compared with some filamentous strains16,30. A unicellular, 
marine, diazotrophic Synechococcus strain (Synechococcus Miami 

BG 43511; later classified as Cyanothece Miami BG 4351116) was also 
shown to exhibit high rates of nitrogenase activity and hydrogen 
production31. Unfortunately, this strain has not been readily acces-
sible to the general research community. Notably, not all unicellular 
cyanobacterial strains are endowed with these traits, as is evident 
from studies on Gloeothece, a unicellular freshwater diazotroph that 
possesses a nitrogenase enzyme with relatively low specific activity 
and does not have any appreciable nitrogenase-mediated H2 pro-
duction capacity32.

Diazotrophic cyanobacteria have developed various strategies 
to protect their nitrogenase enzyme from the oxygen-rich envi-
ronment they inhabit. However, unlike Cyanothece 51142, most 
diazotrophic strains are unable to exhibit nitrogenase-mediated H2 
production under aerobic conditions. In filamentous, heterocyst-
forming diazotrophic strains, this is largely ascribed to the activities 
of an uptake hydrogenase enzyme system that is functionally closely 
associated with nitrogenase and oxidizes the H2 produced3,33–35. It 
has been shown that wild-type Anabaena variabilis cells can gener-
ate H2 only under an argon atmosphere, whereas its uptake hydro-
genase mutants PK84 and AVM13 can produce H2 aerobically27,36–38. 
A recent study also demonstrated H2 production (~25 µmol per mg 
of Chl.h) from the vegetative cells of wild-type Anabaena variabilis 
under nitrogen atmosphere when strict anaerobic conditions are 
maintained39. The genome sequence of Cyanothece 51142 shows the 
presence of hup genes for an uptake hydrogenase. The transcripts 
for one of these genes, hupS, were also detected under H2-pro-
ducing conditions (Fig. 4b). Interestingly, the hupS transcripts in 
Cyanothece 51142 were present under both nitrogen-sufficient and 
nitrogen-fixing conditions (Fig. 4a), indicating that its expression is 
independent of nif. The presence of hupS transcripts and the con-
current accumulation of H2 at high rates under aerobic incubation 
conditions are suggestive of a weak uptake hydrogenase activity in 
Cyanothece 51142. Such a premise is also supported by the obser-
vation that a few wild-type Anabaena strains that possess uptake 
hydrogenases with very low specific activities can also exhibit aero-
bic H2 production24,40,41.

The ability to use high concentrations of CO2 or glycerol for 
enhanced H2 production is an added advantage, as both of these 
carbon sources are abundantly available as industrial waste prod-
ucts, making biohydrogen production by Cyanothece 51142 an 
attractive option. High CO2 and glycerol provide an additional car-
bon source and the availability of excess carbon functions as a signal 
for enhanced nitrogenase activity to meet the increase in nitrogen 
demand in these cyanobacterial cells. The rise in the glycogen level 
of cells at the end of the incubation phase in glycerol-supplemented 
cultures could be a result of cellular activities geared towards build-
ing energy reservoirs when an external energy source is readily 
available21.

Decades of research have unveiled various principles underlying 
biological H2 production. However, achieving significant increases 
in yield has been a major challenge. Genetic modifications of H2-
yielding pathways have resulted in improvements in production 

Table 1 | Specific rates of H2 production by wild-type strains of Cyanothece 51142 and other model photosynthetic microbes.

Strain Enzyme Specific rates (aerobic incubation) Specific rates (anaerobic incubation)

(mmol per mg of Chl.h) (mmol per mg of Chl.h) (mmol per mg of protein h − 1)

Cyanothece 51142 Nitrogenase 152 373 3.5
Anabaena 29413 Nitrogenase — 39.4 (ref. 24) 0.02 (ref. 42)
Synechocystis 6803 Hydrogenase — 1.2* (ref. 11) ND
Chlamydomonas reinhardtii Hydrogenase — 6.6*,† (refs 12, 13) ND
Rhodopseudomonas palustris Nitrogenase ND ND 0.92† (refs 9, 28)

Abbreviations: ND, not determined; —, not detected.

*Initial rates of H2 production.
†The rates were calculated using information from references 9, 28, 12 and 13.
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Figure 3 | Effects of external carbon sources on glycogen accumulation 
in Cyanothece 51142. I0 (red) and I12 (blue) indicate the beginning and end 
of a 12 h-light incubation period for H2 production, respectively. Differences 
in glycogen level between the two time points correspond to the amount 
of glycogen used for N2 fixation/H2 production. Each column represents 
an average of measurements from at least three biological replicates. Error 
bars indicate s.d. values from the average.
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rates compared with the corresponding wild-type strains9,42,43. How-
ever, as the H2 production rates in these wild-type strains are rather 
modest, even a 20-fold increase in yield in mutant strains is not 
sufficient to attain a high production level. Therefore, our identi-
fication of a cyanobacterial strain exhibiting high rates of H2 pro-
duction under ambient aerobic conditions offers new possibilities 
in photobiological hydrogen production research. Recent studies 
have revealed the metabolic flexibility of this cyanobacterium25, and 
demonstrated that its robust circadian rhythm allows N2 fixation  

and H2 production to occur at reasonably high rates even when 
grown under continuous light44. Previous studies have shown the 
robustness of other cyanobacterial systems for H2 production over 
a prolonged period of time38, demonstrating the possibility of using 
high-H2-yielding cyanobacterial strains for large-scale production. 
A systems level understanding of this biological phenomenon in 
Cyanothece 51142 will unravel previously unknown cellular factors 
and regulatory mechanisms that influence the process so that they 
can be favourably altered to produce even higher levels of H2 as an 
energy carrier.

Methods
Growth conditions. For H2 measurement, Cyanothece 51142 cells were grown in 
shaking flasks in ASP2 medium45 without supplemented NaNO3 at 30 °C under 12 h 
light/12 h dark cycles and 100 µmol photons per m2 s − 1 of white light. Cultures were 
inoculated with 0.25 volumes of cultures grown in ASP2 medium without NaNO3 
under continuous light (50 µmol photon per m2 s − 1 white light), which in turn were 
inoculated with 0.1 volumes of cultures grown in ASP2 with NaNO3 under similar 
conditions. For photomixotrophic growth, cultures were supplemented with 
50 mM glycerol. For growth under high-CO2 conditions, the cultures were aerated 
with 8% CO2-enriched air at a flow rate of 100 ml min − 1.

H2 production and nitrogenase activity measurement. A volume of 20 ml of 
culture was transferred at the beginning of the dark period to air-tight glass vials 
(36 ml) and incubated in air under a light intensity of 100 µmol photon per m2 s − 1 
for 12 h. The chlorophyll content of cultures grown without an external carbon 
source ranged between 0.5 and 2 µg ml − 1, whereas cultures supplemented with 
glycerol had higher chlorophyll concentration (2–5 µg ml − 1). Dry weight of photo
autotrophically grown culture ranged between 90 and 98 µg ml − 1. For anaerobic 
incubation, the glass vials were flushed with argon for 15–30 min. For the batch 
culture experiment, 25 ml of dense (8–12 µg chlorophyll �������������������������   per ml culture����������� ) glycerol-
supplemented culture was incubated in 145 ml vials under constant illumination. 
H2 that accumulated in the headspace of sealed culture vials was withdrawn with 
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an air-tight syringe and quantified using an Agilent 6890N Gas Chromatograph 
(Agilent) equipped with a Molsieve 5A 60/80 column (Molsieve; inner  
dimensions 6′×1/8″) and a thermal conductivity detector. Injection port, oven  
and detector temperatures were 100, 50 and 100 °C, respectively. Argon, the  
carrier gas, was supplied at a flow rate of 65 ml min − 1. The volume of gas 
expressed in the results section was under standard conditions (assuming 1 ml 
H2 = 44.6 µmol).

Nitrogenase activity of the H2-producing cultures was determined using an 
acetylene reduction assay46 and expressed in terms of the ethylene produced.  
Cells were incubated in sealed glass vials in light at 30 °C under a 5% acetylene 
atmosphere with or without flushing with argon. Gas samples were withdrawn,  
and ethylene production was measured using an Agilent 6890N Gas  
Chromatograph (Agilent) equipped with a Poropak N column (inner  
dimensions 5′ × I/8″) and a flame ionization detector using argon as the carrier 
gas (flow rate of 65 ml min − 1), according to the manufacturer’s instructions. 
The temperature of the injector, detector and oven were 150, 200 and 100 °C, 
respectively.

Total chlorophyll a was extracted by methanol and quantified spectropho-
tometrically using an Olis DW2000 spectrophotometer (On-Line Instrument 
Systems). Protein concentrations were determined using a bicinchoninic acid assay 
(Pierce) according to the manufacturer’s instructions.

Oxygen measurements. O2 concentrations in the headspace of the incubation 
vials were determined using an Agilent 6890N Gas Chromatograph (Agilent) 
equipped with a Molsieve 5A 60/80 column (Molsieve; inner dimensions 6′×1/8″) 
and a thermal conductivity detector using the same settings as described above for 
the H2 assay. The measurements were taken under standard conditions. Dissolved 
O2 concentration in the incubation vials was measured using a Clark-type elec-
trode. Calculations were based on the fact that air-saturated water contains 230 µM 
of O2 at 30 °C.

Determination of glycogen content. Samples were collected for the glycogen 
assay at the beginning and end of the 12 h-light incubation phase of H2 produc-
tion. The cellular glycogen content was measured using a glucose hexokinase assay 
(Sigma) with glycogen from bovine liver Type IX (Sigma) as standard. After metha-
nol extraction of chlorophyll, the cell pellets were washed twice with 100% ethanol. 
To remove free glucose, 40% KOH was added and the samples were incubated for 
1 h at 95 °C. Glycogen was precipitated overnight at  − 20 °C with 2 volumes of 100% 
ethanol. The samples were centrifuged for 1 h at 4 °C and 2 N HCl was added before 
incubation at 95 °C for 30 min. The same volume of 2 N NaOH and 0.5 volumes of 
1 M phosphate buffer, pH 7, were added before dilution with 1 volume of distilled 
water. For the enzyme assay, 75 µl of sample solution was mixed with 200 µl of 
enzyme solution in a microtitre plate (Costar, ultraviolet light proof). After 15 min 
incubation at ambient temperature, NADPH was measured at 340 nm on a µQuant 
plate reader (Bio-Tek Instruments).

Semiquantitative reverse transcription (RT–PCR). Semiquantitative RT–PCR 
analyses were performed on RNA samples isolated from cultures grown under 
nitrogen-fixing ( − NO3) conditions, with and without supplemented glycerol; from 
cultures grown under aeration with 8% CO2-enriched air; and under non-nitrogen-
fixing conditions ( + NO3). For the time-course experiment, samples were collected 
every 4 h for 24 h, starting with 1 h into the dark period (D1). In total, six samples 
were collected. For RT–PCR analysis under H2-producing conditions, culture  
samples were assayed at the end of the light period at time point I0 and from the assay  

bottles at the end of incubation at time point I12. RNA was isolated and quantified 
essentially as described in ref. 14. A volume of 700 ng of DNase (Promega)-treated 
total RNA samples was used for reverse transcription with the Superscript II  
Reverse Transcriptase and random primers (Invitrogen) according to the manufac-
turer’s instructions. The absence of DNA contamination was tested for each RNA 
sample (Fig. 4b). PCR was carried out at 94 °C for 4 min, followed by 94 °C for 30 s, 
58 °C for 20 s, 72 °C for 20 s and a final extension time of 4 min at 72 °C. A total of 
25 cycles for the nifH, hupS, glgP and coxA genes and 26 cycles for the hoxH gene 
were used. The following primers were used: nifH F: 5′-ACCATT 
GCTGCGTTAGCTGAAAC-3′, R: 5′-TAATACCACGACCCGCACATCCA-3′; 
coxA F: 5′-TGATATGGCCTTTCCCACCCTCA-3′, R: 5′-AGAGAACTAAAGCG 
GCAGCGAGA-3′; hupS F: 5′-ATAGCTGGTTTCGTTGTCGCTGT-3′, R:  
5′-CGAAGTCTTGGGTGGTTGCTTTG-3′; hoxH F: 5′-TGGAGAAGACG 
GACTTTGGGAAC-3′, R: 5′-AAAGAAGAGGTCGCTACACCACC-3′; glgP F:  
5′-TCGGCTGAATTCCTTATGGGTCG-3′, R: 5′-CAGGAATTTCCACTT 
GCCAACCG-3′; 16S rRNA F: 5′-AGAGGATGAGCAGCCACACT-3′, R: 5′-TAAT 
TCCGGATAACGCTTGC-3′ (F: forward, R: reverse). 
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