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Systems biology attempts to reconcile large amounts of disparate data with existing knowledge

to provide models of functioning biological systems. The cyanobacterium Cyanothece sp. ATCC

51142 is an excellent candidate for such systems biology studies because: (i) it displays tight

functional regulation between photosynthesis and nitrogen fixation; (ii) it has robust cyclic

patterns at the genetic, protein and metabolomic levels; and (iii) it has potential applications for

bioenergy production and carbon sequestration. We have represented the transcriptomic data

from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and

describe development of a predictive in silico model of diurnal and circadian behavior in terms

of regulatory and metabolic processes in this organism. We show that incorporating network

topology into the model improves performance in terms of our ability to explain the behavior of

the system under new conditions. The model presented robustly describes transcriptomic behavior

of Cyanothece 51142 under different cyclic and non-cyclic growth conditions, and represents a

significant advance in the understanding of gene regulation in this important organism.

Introduction

Organisms from cyanobacteria to humans display rhythmic

behavior closely linked to circadian and diurnal cycles. Many

systems utilize a complex interplay between circadian rhythms

that provide internal temporal cues, and the diurnal cycle,

which often serves to entrain the circadian machinery using

external inputs.1 Organisms that rely on photosynthesis have

evolved complicated systems for regulation of diurnal rhythms

to deploy photosynthetic machinery in response to light and

circadian mechanisms to ensure that the organism is ready for

the light period.2–5 The interaction of environmental cues,

such as light and temperature, and the activity of the circadian

clock is an area of intense study.2–4,6–11

Cyanothece sp. ATCC 51142 (here, Cyanothece 51142) is an

important bacterium in benthic environments, both as a fixer

of atmospheric nitrogen and as a photosynthetic primary

producer that evolves O2.
12 The two processes, however, are

incompatible, as the nitrogenase enzyme is extremely sensitive

to oxygen. This challenge in diazotrophic cyanobacteria is

usually met with the formation of specialized heterocysts in

filamentous cyanobacteria such as Anabaena and Nostoc,13

which provide a spatial separation of the two pathways.

Cyanothece 51142, on the other hand, separates these pathways

temporally.14 It does so using a robust ‘‘clocking’’ mechanism

that divides central metabolic processes diurnally, undergoing

photosynthesis during light cycles and nitrogen fixation during

the dark.5 The tight organization of metabolic processes in

Cyanothece 51142 were also found to be clocked through a

circadian rhythm and a transcriptional analysis over light/dark

(LD) cycles showed tight clustering of photosynthesis-related,

nitrogenase-related, and respiration-related transcripts; the

inferred network based only on statistical relatedness resulted

in a functional ‘‘clock’’ of activity.5,15

We and others have undertaken global transcriptomic

studies of cyanobacteria3,5,16 during light-dark cycles to discover

genes that cycle in response to circadian, diurnal, or other

cues. These studies have identified regulatory interactions and

defined functional modules which are temporally distinct by

identifying individual genes that cycle and finding correlations

between genes with similar functions. We have used networks

of inferred regulatory relationships to visualize and analyze

complicated transcriptomic data.5,15 Topological analysis of
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these networks can be used to provide biological insight into

important genes in the system. Proteins that are highly central

in protein-protein and regulatory interaction networks,

so-called bottlenecks and hubs, were shown more likely to

be important to the system in several studies.17–19 We have

used a similar approach to analyze networks from inferred

transcriptomics20,21 or global proteomics measurements,22 and

to identify putative mediators of transitions between system

states.

A number of mathematical models of cyanobacterial behavior

have been developed and largely focused on aspects of the

circadian clock machinery.23,24 A recently described model

expands on this approach to describe multiple aspects of the

system at both abstract and molecular levels, using an agent-

based modeling approach.25 Metabolic models based on existing

knowledge about enzymatic reactions and a set of simplifying

assumptions have also been developed for cyanobacterial

species.26 These kinds of bottom-up models can be limited in

their ability to make predictions about metabolic functions not

included in the construction of the model or about global

patterns of transcription. In contrast top-down approaches

strive to generate useful models directly from high-throughput

data generated for the system, with little reliance on existing

knowledge. We2,5,15,27 and others28,29 have used various

methods to infer networks of regulatory associations from

high-throughput data, shedding light on the overall organization

of the transcriptional programs of cyanobacteria at a high

abstraction level.

Recent developments in this area have produced computa-

tional models from high-throughput data that are predictive of

the global transcriptional regulatory program of the organism.

Bonneau, et al., developed a method to infer a parsimonious

set of regulatory influences that accurately describe the trans-

criptional behavior of a set of targets, co-regulated sets of

genes in Halobacterium.30 The method uses gene expression

profiles from both equilibrium and time course experiments to

fit ordinary differential equations (ODEs) and selects the

minimal set of most informative regulatory influences for each

target cluster. Models such as these rely on a simplified version

of the system based on clustering of genes with similar

behavior into functional modules to identify and parameterize

regulatory influences. These kinds of models can be used to

predict the global behavior of a system using measurements

from a small number of regulators or other input parameters,

to predict the behavior of the system at a future time point,

and to formulate predictions based on in silicomanipulation of

the model, for example regulator knock-downs or variance of

environmental conditions.

In the current study we report the development of a

predictive model of cyclic behavior in Cyanothece 51142 using

a previously published method, the Inferelator.30 The model is

based on a set of transcriptional experiments that are focused

on investigating diurnal and circadian processes in this organism.

We report that the model can accurately predict the behavior

of the system when validated on independent data. We found

that topology derived from co-expression networks was

correlated with gene conservation and that including topological

bottlenecks as potential regulators improves the performance

of the predictive model. Functional modules, i.e. targets of the

inference process, were defined using an iterative process of

modeling. We found that the behavior of portions of the

metabolic network representing important metabolic processes,

e.g. nitrogenase and ribulose-1,5-bisphosphate carboxylase

oxygenase (RuBisCO), could be accurately predicted using

our models. Finally, we show that the model trained on cyclic

time course data is capable of predicting expression dynamics

in an acyclic validation time course experiment following

Cyanothece 51142 in low oxygen conditions. The models we

describe represent an important step forward in the systems

biology of photosynthetic cyanobacteria and provide a large

number of insights into important biological processes under

cyclic regulation.

Results and discussion

Network analysis of Cyanothece 51142 dynamics

Previously we have used co-expression networks to determine

functional modules and represent dynamic processes of

Cyanothece 51142 at a transcriptional level.5,15 A powerful

tool to assess the importance of individual genes in regulation

of the system is network topology.20,22,31 Since there is little

known about the regulatory structure of Cyanothece 51142,

we wanted to ascertain if approaches based on network

topology could identify important regulators of system

dynamics.

We first inferred networks between genes using Pearson

correlation or the context likelihood of relatedness (CLR)

method.32 Each method uses the similarities between expression

profiles of genes to determine relationships that can represent

regulation (gene A regulates gene B), co-regulation (genes A

and B are both regulated by gene C) or co-expression (genes A

and B expressed at the same time). The Pearson correlation

network forms a ‘wreath’ structure that is temporally ordered

(see the ESIw) and is shown in Fig. 1. The colors in Fig. 1

indicate membership of clusters derived from the full ensemble

of time course data. Therefore some of the clusters in this

network, which was based only on the 12 h LD data, appear

discontinuous. We then identified topological bottlenecks by

calculating the betweenness centrality of all the genes in net-

works. This measure is based on the number of times that a

gene is used by the shortest paths between all other pairs of

genes in the network. To assess the importance of the genes in

the network we used the evolutionary conservation of the gene

(see Methods). In general, conserved genes may be more

important to a system, because they represent functions that

have been selected over evolutionary time. Based on previous

studies,17,18,20 we considered the 20% of the genes in the

network with the highest betweenness values as bottlenecks.

We found that bottlenecks were significantly more likely to be

present in the closely related cyanobacterium Synechocystis sp

PCC 6803, in Escherichia coli, or in the plant Arabidopsis

thaliana, and shared in all photosynthetic organisms in general

(Synechocystis, Anabaena, and A. thaliana) than both the

average of other genes in Cyanothece 51142 and other cyclic

genes in the network (Fig. S1, ESIw) (p value o 0.01 by

Chi-square test). The top topological bottlenecks from

this network are listed in Table 1, which also shows their
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classification as diurnal or circadian using conservative criteria,

the cluster they belong to (see Table 2) and their peak

expression time (transition). We noted the presence of several

key regulators known to be mediators of transitions between

system states in closely related systems (shown in Fig. 1) and

these are discussed below. Our hypothesis, based on our

results20,22 and those of others,33 is that these bottlenecks

represent mediators of transitions between different biological

states in the system. That is, they participate in the function of

two (or more) functional modules, and may represent points of

control when the system moves from one state to another.

Roles of topological bottlenecks in systems transitions

Functional enrichment of bottlenecks shows that they are

enriched in a number of processes previously identified as

important for Cyanothece 51142 (Table S1, ESIw), although

this enrichment was close to the significance threshold due to

the small number of bottlenecks examined. The top bottle-

necks include several genes that are known to play a role in

transitions between system states. A patB homolog directly

precedes the nitrogenase cluster in our network and is known

to be involved in the induction of nitrogenase activity in

Anabaena.34 We have previously shown that sigD, a RNA

polymerase sigma factor, which has a gene expression peak at

the end of the light period spanning into the early dark, plays a

critical role in this transition.35 The rpaA gene, a transcrip-

tional regulator, peaks late in the day, concurrent with sigD. It

is known from mutational studies in Synechocystis that the

rpaA/sasA two component regulatory system is a major

component of the circadian timing system and associates with

the phosphorylated form of the KaiC protein.36 Two members

of the OPP pathway are found in the list of top bottlenecks.

The transketolase A (tktA) gene was shown to be upregulated

Fig. 1 Topology of the cyclic wreath network for Cyanothece 51142 transcription. A co-expression network of the transcriptomic profiles from

Cyanothece 51142 genes under 12 h LD cycles was constructed. The temporal ordering of gene expression in Cyanothece 51142 is represented in the

network by the location of a gene (node) at its peak expression. Colors represent clusters identified by hierarchical clustering of the complete

dataset that includes three other time course experiments (see legend and Table 2). Topological bottlenecks were identified from the network, and

the top 5% shown as squares in the network. Additionally, the temporal location of functional groups and several known regulators of systems

transitions are labeled.
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in light and this to be increased in the sigD mutant in

Synechocystis.35 tktA has a peak early in the day around L1

directly preceding induction of the photosynthetic machinery

genes, consistent with these findings. The opcA gene is known

to be essential for the functioning of the glucose-6-phosphate

dehydrogenase (G6PDH) complex in the OPP pathway that

plays an important role in glucose breakdown and generation

of reducing power in several cyanobacteria.37,38 This gene is

located between genes associated with glycogen metabolism,

all active in the dark and involved in breakdown of glycogen

granules, and the nitrogenase gene cluster, which is powered

by glycogen breakdown. Each of these examples from related

organisms provides an important hypothesis about the

functioning of the system in terms of transitions between

system states in Cyanothece 51142.

Predictive model of transcriptomic dynamics in Cyanothece

One goal of a systems biology approach is to develop models

that can provide accurate predictions of states of the system

based on observation of a small number of inputs, for example

environmental conditions or expression levels of regulators.

We expanded on our previous analysis of the dynamics of

Cyanothece 51142 under cyclic conditions15 by developing a

model that could predict the transcriptomic behavior of the

system under novel conditions. Our prototype model used a

Table 1 Top 25 topological bottlenecks

ID Rank Name Cyclicity Description Cluster Transition

cce_4095 1 circadian unknown; contains UPF0004 7 L to D
cce_3378 2 diurnal Two-component response regulator 7 L to D
cce_1898 3 patB circadian Transcriptional regulator (nitrogen fixation) 17 D
cce_3594 4 sigD circadian RNA polymerase sigma factor 2 7 L to D
cce_0579 5 fdxB circadian Ferredoxin III 18 D
cce_4627 6 tktA diurnal Transketolase 1 D to L
cce_3149 7 circadian unknown 1 D to L
cce_4205 8 circadian hypothetical protein; contains a GCN5-related N-acetyltransferase domain 4 D
cce_3446 9 circadian unknown 10 *
cce_3607 10 circadian putative D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase 7 L to D
cce_3564 11 diurnal unknown 3 L
cce_1844 12 circadian unknown; contains an EF-Hand type domain 17 D
cce_1629 13 glgP1 circadian Glycogen phosphorylase 10 *
cce_0043 14 gmhA diurnal Phosphoheptose isomerase 7 L to D
cce_2449 15 diurnal unknown; contains a glycoside hydrolase, family 57 domain 1 D to L
cce_3617 16 leuB 3-isopropylmalate dehydrogenase 1 D to L
cce_0298 17 rpaA diurnal Two-component response regulator (circadian rhythm) 7 L to D
cce_1749 18 circadian hypothetical protein; contains a conserved TM helix domain 7 L to D
cce_0072 19 diurnal UPF YGGT-containing protein 3 L
cce_4510 20 shc diurnal Squalene-hopene-cyclase 7 L to D
cce_2625 21 psbU diurnal photosystem II 12 kD extrinsic protein 3 L
cce_2535 22 opcA circadian OxPPCycle protein 11 D
cce_2552 23 diurnal unknown; contains amidinotransferase and CHP300 domains 1 D to L
cce_2500 24 circadian hypothetical protein; contains a radical SAM domain 7 L to D
cce_1482 25 circadian conserved hypothetical protein 11 D

Table 2 Prediction and function of coexpressed modules

Cluster R (cyc) Validationa N Enriched functions Peak

1 0.78 0.98* 619 ribosomal proteins, chemotaxis, alanine and aspartate metbolism D5-L1
2 0.33 0.66 90 L1
3 0.93 0.99* 173 diurnal, PSII, proteolysis and peptidolysis L5-L9
4 0.85 �0.97 276 circadian, TCA cycle, reductive carboxylate cycle

(CO2 fixation), amino acid biosynthesis
L9-D5

5 0.67 0.98 14 D9
6 0.65 0.45 15
7 0.57 0.97+ 57 diurnal, photosystem I reaction center and PSI, aminosugars metabolism L5-L9
11 0.55 0.99 70 circadian, cytochrome-c oxidase activity L9-D1
12 0.60 �0.81 14 ribosome, porphyrin and chlorophyll metabolism D5
13 0.46 0.96* 103 diurnal, phycobilisomes, photosynthesis antenna proteins,

oxidative phosphorylation, RuBisCO, ATP synthase
L1

15 0.74 0.86 42 diurnal, peptidoglycan synthesis L1-L5
17 0.43 0.74+ 28 circadian, nitrogen fixation, nitrogenase D1
18 0.67 �0.99 24 circadian, nitrogen fixation, nitrogenase, oxidoreductase activity D1-D9
19 0.84 1.00* 11 circadian, nicotinate and nicotinamide metabolism,

pentose-phosphate shunt
L9-D1

R (cyc), performance of cyclic model on cyclic data; Validation, performance of cyclic model on low oxygen data; N, number of genes in cluster;

Enriched functions, statistically enriched functions in cluster (p o 0.05); Peak, time of peak expression in normal 12 h LD experiment. a Asterisks

indicate statistical significance (p o 0.02) versus 100 random sets; plus indicates marginal significance (p o 0.1).
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previously published multivariate regression method, the

Inferelator,30,39 to infer a network that relates the expression

of minimal sets of regulators to the expression of target

co-expressed clusters as ODEs.

Initially, we chose a set of potential regulators for model

development that are annotated as transcription factors (TFs),

sigma factors or circadian kai genes (see Table S2, ESIw). We

defined the targets of the inference process to be co-expressed

clusters of genes using various clustering methods and found

the clustering approach and number of clusters that provides

the best model performance (see Table S3, ESIw). Performance

was assessed using a conservative cross-validation approach in

which groups of similar conditions were treated independently

for training and testing the model (Fig. 2), and are presented

as the mean correlation between observed and predicted

expression values per gene. The groups of datasets used and

the maximum correlation between them and any of the other

datasets are listed in Table S4.w This table shows that the

groups are relatively independent of each other, with the

maximum correlation between conditions in any two groups

being no more than 0.6.

We found that our initial model, which includes 30 clusters

as inference targets, provided very good performance as

evaluated by cross-validation. The gene-normalized correlation

for the model was found to be 0.62 indicating that the majority

of genes were included in clusters whose behavior could be

accurately predicted (Table 2). Functional enrichment of

cluster membership show that these clusters represent

previously observed functional groups (Table 2) that largely

recapitulate our previous observations using network inference.15

Since these functional groups are meant to provide a general

idea of the functional processes that could be accurately

predicted by our model, we have chosen to not impose a

conservative multiple hypothesis correction, which leaves the

majority of the functional processes listed passing such a filter.

All targets/clusters were predicted with reasonable accuracy,

and we show two examples of expression behavior for target

clusters in Fig. 3.

Topological bottlenecks are predictive of system behavior

If the observed importance of topological bottlenecks in our

inferred networks means that they are mediators of systems

transitions, then expression profiles of bottlenecks should be

predictive of target expression in our model. Accordingly, we

examined how much predictive power could be attained using

just the set of bottleneck genes as potential regulators. We

used a set of bottlenecks (160 genes with the top 10% of

betweenness values from the CLR-based network) as regulators

to develop a model as described. This approach gave an

overall performance of 0.70, better than that of the original

model using only TFs (Table 3). This result indicates that

bottlenecks are as effective at predicting the dynamics of the

system as are the knowledge-based set of TFs, but it was

unclear if the two sets were redundant or complementary in

their ability to predict system behavior. We therefore combined

the two sets of potential regulators (transcription/kai/sigma

factors and topological bottlenecks) and found that the

performance of the model increased to a correlation of 0.75,

better than each set individually. Further, as a control, we

replaced bottlenecks with sets of genes drawn at random from

genes with low betweenness to use as regulators in addition to

the transcription factors. Compared to the use of bottlenecks

only as regulators, random sets of low-betweenness genes

decreased the performance of the model significantly with

the mean performance of 25 such models being 0.37. Combining

these random sets with the TF set did not improve

Fig. 2 Overview of predictive model construction and cross-validation

procedure. (1) Transcriptomic data from three individual time course

experiments, 12 h light/dark (LD), 12 h light/dark/continuous light

(SD), and 6 h short day LD, were normalized and combined as

described in the text. (2) To ensure reasonable cross-validation,

redundant time points from the 12 h SD experiment were put together

with identical time points in the 12 h LD experiment to establish

independent sets. (3) Regulators were identified from annotations and

topological analysis (see text). (4) Co-expressed clusters were identified

from data to reduce the number of targets for inference. (5) A model is

trained by holding out one independent set and training on the

remaining data. (6) The resulting model is evaluated by predicting

the behavior of the held-out set and comparing with observed behavior.

(7) This process is then repeated for the other independent sets

identified from step 2 to evaluate performance of the model in

predicting new behavior. (8) Finally, an independent data set (growth

under low oxygen, full-light conditions) is used to validate the model.
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performance at all. To examine whether these results were

biased by consideration of cyclic data, we examined the impact

of the same combinations on model performance for the low

oxygen validation dataset. These results are more variable due

to the lower number of conditions considered but strongly

suggest that the bottlenecks play an important role in accurately

predicting behavior of the validation data. This further

supported the idea that bottlenecks play an important role

in system function and that topological bottlenecks can be

used to complement transcription and translation factors in

building predictive models. It also shows that topological

bottlenecks can predict system behavior well by themselves,

in accordance with their elevated importance in the system.

Transcriptional regulatory structure of Cyanothece 51142

To determine the regulatory structure of Cyanothece 51142

during cyclic conditions, we used all the genes considered as

regulators (TFs and bottlenecks) as targets of inference and

used our modeling approach to determine a parsimonious set

of relationships between these components. The high-confidence

network combining this regulatory network with the regulator-

target network described above is shown in Fig. S2, ESI.w
We also used the CLR method, which determines regulatory

networks using a mutual information approach, to infer a

regulatory network using all transcriptional data. This network

is very similar to that produced by our modeling approach, but

it lacks the directionality of the regulatory relationships and

Fig. 3 Predicting the behavior of functional groups in Cyanothece 51142 over a range of conditions.We used the developed transcriptomic model to

predict the behavior of all co-expressed clusters in Cyanothece 51142 using the cross-validation approach described (see Fig. 2 and text). The

predicted (green) and observed (red) expression behavior is shown over the conditions used in this study (X axis). The colored bars represent the

independent sets used for cross-validation (see Fig. 2). The dashed boxes show the performance of the model on the low oxygen, full-light

experiment. (A). Expression of cluster_7 that contains most of the photosystem I complex and associated genes. These results show that the model

can predict the transcriptional behavior of some targets with very high accuracy across a range of conditions not used for training. (B) Expression

of cluster_13 that contains energy processing complexes, ATPase, RuBisCO, and Co-A biosynthesis.

Table 3 Topological bottlenecks predict system behavior as well as
transcription factors

Dataset

All datasets Validation dataset

Correlation SD Correlation SD

TFs only 0.62 0.32
Bottlenecks only 0.70 0.80
TFs+bottlenecks 0.75 0.60
TFs+random sets 0.62 0.03 0.11 0.38
Random sets 0.37 0.12 0.20 0.28

Correlation, mean correlation between predicted and observed expression

levels per gene; SD, standard deviation.
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does not allow predictive cross-validation. Details about the

construction of the CLR-based network are provided in

SI along with a comparison between the two networks

(Fig. S3, ESIw).
In particular, we focused on one portion of the regulatory

network that involved three regulators with likely roles in

important functional processes; patB, rpaA, and ntcA. Both

the regression model and CLR-based regulatory networks

predict patB to inhibit rpaA and ntcA (Fig. S3, ESIw). The
regulator ntcA is thought to play a central role in regulation of

heterocyst formation in Anabaena in response to nitrogen

starvation.40 Additionally, patB is known to be specifically

upregulated late in heterocyst formation in response to nitrogen

starvation, is a member of a conserved core set of genes along

with nitrogenase,41 and is thought to be sensitive to redox

state. Finally, rpaA is a member of a two-component system

involving the sasA gene product that is closely coupled to

the KaiABC circadian oscillatory system and regulates

functions involved in energy transfer from photosystem to

the phycobilisome.36,42 In Fig. S2,w it can be seen that ntcA

regulates cluster_17, the cluster that contains the patB gene.

Therefore, it appears that there may be a feedback loop

between patB and ntcA, which seem to play opposing roles

in Cyanothece 51142.

Inferred regulatory influences accurately predict expression

of nitrogenase and RuBisCO

Several clusters in our global model represent important

complexes, including the nitrogenase (nifHDK) and RuBisCO

(rbcLS). We show the inferred regulatory structure of both

these complexes and the expression patterns of the cluster and

the inferred regulatory influences in Fig. 4. The model predicts

the expression of the core nitrogenase genes with a good

correlation of predicted to observed expression of 0.67. The

primary regulator that is predicted to influence the expression

of the nitrogenase complex is PatB. The PatB TF is known

to regulate transcription of nitrogenase in heterocysts in

Anabaena sp. strain PCC 7120,43 is co-conserved with nitro-

genase across a number of cyanobacterial species,41 and is a

likely candidate as a regulator of nitrogenase in Cyanothece

51142. The nitrogenase activity is shown in Fig. 4A over the

normal 12 h LD period, indicating that the gene expression

patterns correlate well with activity for this complex, a well-

established observation.44

The RuBisCO complex is formed by the rbcS and rbcL gene

products and plays a central role in carbon fixation, which is

closely linked to photosynthetic processes. The predicted

regulatory influences on RuBisCO are shown in Fig. 4B and

include an uncharacterized two-component regulator

(cce_0678) that bears a strong resemblance to cce_0298 (rpaA).

Both genes are similar to Ycf27 and Ycf29, chloroplast

proteins that are found in all major plant and algal lineages

and that encode similar transcription factors with a HTH

DNA binding motif.45–47 The exact function of these proteins

is not known, but the parallelism of cce_0678 for photo-

synthesis (Fig. 4 and Fig. S3, ESIw) and cce_0298 (rpaA) for

nitrogen metabolism is striking. These two regulators may be

positively or negatively regulated by similar input signals and

work in parallel to favor either photosynthesis or nitrogen

fixation.

The levels of cyanophycin activity over the normal 12 h LD

experiment are shown in Fig. 4B and correlate well with the

gene expression. We also assessed the rate of CO2 uptake in

Cyanothece 51142 under 12 h LD conditions to correlate the

uptake capacity for CO2 with the RuBisCO gene expression.

Data from this experiment revealed a peak expression of

RuBisCO genes early in the light period and a maximum in

CO2 uptake late during the light period. This suggests that

RuBisCO expression is anticipated by an increase in cellular

CO2 availability, and that its predicted regulators (including

cce_0678) might be involved for this important process.

However, further investigation is necessary to determine if

RuBisCO expression is truly affected by CO2 levels. These

observations show that our approach to characterization of

regulatory influences from high-throughput transcriptional

data provides useful information about the function of

complexes important in metabolism.

Model validation on non-cyclic expression data

The best evaluation of a predictive model is to apply it to data

that has not been used in model training and is qualitatively

different than that used to train the model. Accordingly, we

examined the ability of the model to predict transcriptional

behavior under low oxygen growth conditions that do not

include LD transitions. Cyanothece 51142 was grown in the light

without oxygen for 6 h and samples taken for transcriptomics

at 1, 2, and 6 h (see Methods). Though portions of the

response to low oxygen growth may be similar to that during

the low oxygen conditions in the dark, the responses are

substantially different because of the differences in growth

conditions. The maximum correlation between the low oxygen

conditions and any other training condition was 0.32, showing

that the similarity between these conditions and any of the

other training conditions is quite low (Table S4, ESIw). We

evaluated the performance of the model trained on the cyclic

time course data applied to the low oxygen time course data

and found that the predictive performance was good

(0.60 correlation observed versus predicted expression per gene)

and that the behavior of many clusters could be very accurately

predicted (see Table 2). Because there are a limited number of

conditions in the validation set we were concerned that some

of these results could be coincidental. Thus, we examined this

possibility by randomly resorting gene labels for the validation

set 100 times and calculating the p-values for the performance

of the model on each. Significance (p o 0.02) is indicated in

Table 2 and shows that the performance of two of the clusters

with high performance on the validation data (clusters 5 and 11)

did not pass our significance test, whereas the other highly

predicted clusters did. The three clusters that are poorly

predicted under low oxygen conditions (clusters 4, 12, and 18)

seem to represent functions that are regulated very differently

under light/dark, oxidative conditions vs. continuous light,

low O2 conditions (e.g. nitrogenase, CO2 fixation), which may

explain why the model fails to accurately capture their

dynamics. Table 4 summarizes the overall performance of

four models constructed from portions of the data, then
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applied to the portion excluded from the model to independently

validate the model. These results show that the models validate

well with all independent data sets, but that the low oxygen

data set has the lowest overall performance. This independent

evaluation shows that the inferred model is consistent for most

genes considered, but also highlights modules that require

further experimental characterization.

Conclusions

In this study we have presented a predictive model of cyclic

transcriptional processes in Cyanothece 51142, and show that

this model can accurately predict the behavior of co-expressed

clusters and important functional complexes under conditions

not included in the training data. Additionally, we

have extended our network analyses of the transcription of

Cyanothece 51142 to highlight the importance of topological

bottlenecks to the overall functioning of the system. Importantly,

we show that topological bottlenecks are as good at predicting

the behavior of the system as traditional regulators defined by

gene annotation. Our results represent the first global predictive

model of transcriptional behavior in a cyanobacterium.

The model we present can be queried in different ways to

provide hypotheses pertinent to the functioning of the system

as a whole, which can be validated experimentally. One kind

of hypothesis is presented in this study, the predicted

regulatory connections between functional components

Fig. 4 Accurate prediction of nitrogenase and RuBisCO transcription. The inferred regulatory influences on the (A) core nitrogenase genes

(nif DHK), and (B) RuBisCO complex (rbcLS) are shown with red arrows indicating positive influence and blue lines indicating negative influence.

The orange triangle represents the influence is a combination of the two expression patterns. Blue nodes are genes that are transcriptional

regulators, pink nodes are topological bottlenecks. The middle panels show expression patterns during the 12 h LD experiment: the predicted

(green) and observed (red) expression for each cluster; the expression patterns of the inferred regulatory influences with black indicating the

strongest positive influence (patB and cce_0678 for nitrogenase and RuBisCO, respectively), and blue lines indicating negative influences; and levels

of nitrogenase activity, CO2 uptake and cyanophycin accumulation. The bottom panels show the predicted and observed expression patterns and

regulator patterns for the 6 h LD experiment.

Table 4 Performance on different independent validation datasets

Dataset Training N Testing Na Correlation

Cyclic 12 h LD 14 21 0.78
Continuous Light 32 3 0.82
Short 6 h LD 27 8 0.80
Non cyclic low oxygen 32 3 0.60

Training N, number of conditions used to construct model; Testing N,

number of conditions used to validate the model; Correlation, mean

correlation between predicted and observed expression levels per gene.
a For testing groups see Table S4, ESI.w
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(co-expressed clusters and other regulators) and can be validated

by experiments that eliminate the activity of the predicted

regulator and examine its effect on the expression of the predicted

target. Prediction of the behavior of the system under novel

conditions (as demonstrated in this study) is also possible, and

the expression of a small number of regulators can predict the

global behavior of the system. We are currently pursuing these

avenues in Cyanothece 51142 and in the closely related and

genetically tractable, Cyanothece sp. PCC 7822.

We have shown that topological analysis of association net-

works is promising for identification of true bottlenecks that

mediate transitions between system states, identifying genes that

are apparently more important to the system. These predictions

summarize a large amount of information in the system, and

thus represent a starting point for further investigation. They

are based on analysis of high-throughput data, and therefore

are unlikely by themselves to provide mechanistic insight into

function. Examining the functions of connected genes in the

network, temporally upstream and downstream, will shed light

on the general function of the bottlenecks in the system.

However, experimental investigation is needed to validate and

further investigate these predictions.

The results we present in this study show that our modeling

approach is very useful for understanding the regulation and

dynamics of the transcriptomics of functional processes in a

highly cyclic system. In some cases, the expression of genes

directly reflects their function (for example the nitrogenase

complex), however, this will not be true for all (or even most)

cases. Therefore, integration of other data types,

high-throughput proteomics and metabolomics for example,

should provide the basis for a more complete model that can

accurately predict more functional processes in the system.

Modules defined from the Cyanothece diurnal cycling trans-

criptomics data represent system states in which genes important

for particular functions have peaks. The system requires regula-

tory and metabolic transitions to activate the appropriate system

states in response to appropriate environmental signals.48 This

allows Cyanothece to be flexible in response to variations in

photocycles and availability of nutrients. These transitions are

mediated by transcriptional regulators, environmental sensors

and proteins with other functions; e.g., ion channels. The

essential components of the system can then be thought of as

the set of functional modules that actually do the work, and the

mediators that join them together and regulate their activity.

These ‘mediators’ of system transitions act as effectors that must

be active under both the condition of origination and the ‘target’

condition. Mediators represent decision points where the system

may choose to take a number of different courses based on the

input signals, either environmental signals (light or dark) or

inputs from the originating module. Our predictive model

captures many of these elements, allowing accurate and robust

prediction of transitions between system states.

Methods

Data sources

We used transcriptomic data from studies of Cyanothece

51142: 12 time points from a 12 h LD experiment sampled

every 4 h over 48 h;5 12 time points from a 12 h dark/light/

continuous light (subjective dark; SD) experiment sampled

every 4 h over 48 h;16 and 12 time points from a 6 h LD

experiment sampled every 2 or 4 h over 24 h.15 Datasets from

each experiment were normalized using the standard Agilent

array protocol, as described in the respective publications, and

expressed as fold-change values from the mean expression

value for each gene. The combined dataset was filtered to

include only genes with fold-change greater than 2.5 in at least

one condition. For display purposes the combined dataset was

quantile normalized. This analysis resulted in 1595 genes with

significantly changing expression profiles considered in our

modeling efforts. The original microarray data for the 12 h LD

and 12 h SD experiments are available through the European

Bioinformatics Institute ArrayExpress (http://www.ebi.ac.uk/aerep/)

database accession numbers E-TABM-337, and E-TABM-386.

The microarray data for the 6 h LD and low oxygen

experiments are currently being deposited in the ArrayExpress

database.

Low oxygen growth conditions were previously described49

and microarray data described separately.15 Briefly, cells were

grown under 12 h LD conditions with oxygen until time 0,

when cells were bubbled with 99.9% N2 and 0.1% CO2, giving

low-O2 conditions. Cells were harvested for RNA preparation

and microarray hybridization at 1, 2, and 6 h growth in low

oxygen under full light.

Determination of homology

We used the program InParanoid50 to determine protein

homologs between Cyanothece 51142 and Anabaena sp. PCC

7120 (NC_003272), Arabidopsis thaliana,51 Escherichia coli

(NC_000913) and Synechocystissp. PCC 6803 (NC_000911).

For this study no distinction was made between orthologs and

paralogs. Homologs were determined with InParanoid using a

bit score threshold of 40, and considering protein pairs where

the alignment covered more than 50% of each sequence.

Cyclic wreath construction

With the filtered set of expression profiles described above we

calculated the Pearson correlation coefficient between all pairs

of genes. A wreath network was generated by applying a

stringent threshold (0.91) to the positive correlation values

between all genes, as previously described for relevance networks.5

Using standard graph layout algorithms (e.g. force-directed

layout using the program ‘‘not’’ from the GraphViz suite;

http://www.graphviz.org) the resulting networks are shaped

like a wreath (see Fig. 1).

Network topology

We calculated network topology measures using the Python

library NetworkX (http://networkx.lanl.gov/). Betweenness

centrality is calculated as the percentage of times a node (gene)

appears in the shortest path between all pairs of nodes. Node

centrality is calculated as the number of neighbors of a

particular gene (degree). Bottlenecks and hubs were defined

as the top 20% of genes ranked by betweenness and node

centrality, respectively, as previously described.17,18,20
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Clustering

Hierarchical clustering was performed using hclust in the R

statistical package and a range of distance methods and

agglomeration methods (see ESIw). For Pearson and Spearman

correlation a distance matrix was calculated as 1-R for all values.

Construction of predictive models

We used the Inferelator30 version 1.1, as well as our own R

code supporting the cross-validation approaches and other

supporting utilities (available upon request) to develop

predictive models based on transcriptomic profiles. We used

sets of TFs (Table S2, ESIw) and topological bottlenecks (see

Results) as potential regulators and sets of co-expressed genes

identified using hierarchical clustering as the targets for

inference. After assessing the performance of various clustering

methods and hierarchical tree divisions resulting in different

numbers of clusters, we found that a hierarchical clustering

method using Euclidean distance between gene profiles and the

‘mcquitty’ agglomeration method and choosing 30 clusters

provided the best performance (see Table S3, ESIw). Our

training data was treated as three time courses in the Inferelator

and we used a tau factor of 15 m for inference, as described

previously for Halobacterium.39 Though this tau may be short

for our longer time intervals (2–4 h), models inferred with

longer tau factors (30 and 60 m) produced poor results.

To provide a method for evaluating how well our models

would generalize, that is, how well the models will be able to

predict the behavior of the system under new conditions, we

employed a cross-validation approach. For each evaluation of

model performance, we trained four models independently:

one trained on all data except the data gathered under

standard 12 h LD cycle5 and the data gathered from the first

cycle of the continuous light experiment16 as this was identical

to the first experiment; one trained on all data except the

continuous light time points; one trained on all data except the

6 h LD experimental data;15 and one trained on all data except

the three time points under low oxygen growth conditions for

validation.15 Each model was then used to predict the behavior

of all targets, for those time points that were left out of the

training set.

In models produced by the Inferelator the relation between

the expression of a target (y) and the expression levels of

regulators with non-null influences on y (X) is expressed as:

t
dy

dt
¼ �yþ

X
biXi ð1Þ

Here, t is the time step used in model construction and b is the

weight for relationship X on y as determined by L1 shrinkage

using least angle regression52 in the Inferelator. Least angle

regression selects a parsimonious set of predicted causal

influences and learns their coefficients (b) from expression

profiles.

We evaluated the ability of models to predict the average

expression of each functional module given the expression

levels of the regulators predicted to influence it. Assuming

equilibrium conditions the derivative dy/dt is 0 and so eqn (1)

can be represented simply as a linear weighted mean:

y =
P

bjXj (2)

We evaluated the performance of models by comparing the

predicted expression levels of all targets with the observed

expression levels using Pearson correlation. The overall

performance of the model was calculated as the average

performance of each target weighted by the number of genes

represented by that target.

We first identified potential regulators in the Cyanothece

genome based on their annotation in the genome12 as a

‘‘regulator’’, we also included sigma factors and kai clock

components in the analysis (Table S2, ESIw). We employed the

Context Likelihood of Relatedness (CLR) method32 applied

to the expression profiles of the regulators over the four

experiments listed above. The CLR method determines potential

associations between regulators based on the mutual information

metric between their profiles that also includes a filtering step

that ranks a relationship between two genes based on its

statistical significance relative to all the relationships determined

for the two genes. The filtering step is designed to filter out

indirect regulatory interactions and allowed confident inference

of regulatory networks in E. coli previously.32 CLR was

performed using 10 bins for data discretization and a spline

degree of 3.

Measurement of CO2 uptake

Cyanothece 51142 cells grown under nitrogen fixing conditions

in 12 h alternating LD were harvested by centrifugation and

washed with air-saturated ASP2 medium without combined

nitrogen. The cell pellet was resuspended in Hepes buffer

(20 mM Hepes, 300 mM NaCl, pH 7.0) and adjusted to a

chlorophyll concentration of 5 mg/mL. The CO2 uptake

measurements were performed using a WMA-4 CO2 analyzer

(PP Systems) at a flow rate of 1 L min�1, a light intensity of

1000 mmol photons/m2*s and a temperature of 30 1C. The

CO2 uptake was calculated as volume of fixed CO2 in mmoles

CO2/mg Chl*h and is based on the assumption that 1 Mol of

CO2 equals 24 L at 30 1C.

Other experimental measures

Measurements of Cyanothece under 12 h light/dark cycles

from previous publications were collated as follows: nitrogenase

activity was taken from ref. 44 and 53; oxygen evolution and

respiration were taken fromref. 44; carbohydrate levels were

taken from ref. 54; and cyanophycin levels measured by

Bradford assay, Western blot and electron microscopy were

taken from ref. 53.

Functional enrichment

For functional enrichment analyses we used the automated

pathway mapping from the Kyoto Encylopedia of Genes and

Genomes (KEGG; ref. 55) and automated Gene Ontology

assignments from InterPro domains56 using the Bioverse

annotation pipeline.57

We calculated functional enrichment (e.g. of identified

clusters) by considering each functional label individually

and calculating the chi-square test value between the

representation of the function in the cluster or group of

interest versus all the other genes in the network. Only genes
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with a functional label were used in this analysis. A p-value of

0.05 or less was considered to be significant.

Determination of cyclic behavior

To more clearly determine the cyclic nature of genes in the

Cyanothece dataset we used the online Haystack tool

described in ref. 8 at http://haystack.cgrb.oregonstate.edu.

We used the default significance criteria provided by Haystack

(p value o 0.05) and used a correlation coefficient filter of 0.8

for evaluation of cyclic genes. Diurnal cyclic genes were

identified as those genes that were cyclic in the 12 h LD

experiment, but not in the 12 h SD or the 6 h LD experiments

whereas circadian genes were cyclic in all three datasets.

Although this is a conservative criterion for classifying genes

with circadian rhythm it highlights genes that are under robust

circadian control.
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