
From: Journal of Computational Biology, 4(45{59), 1997.

Score distributions for simultaneous

matching to multiple motifs

Timothy L. Bailey� Michael Gribskov

San Diego Supercomputer Center
P.O. Box 85608

San Diego, California 92186-9784

Email: ftbailey, gribskovg@sdsc.edu

Phone: (619) 534-8350
Fax: (619) 534-5113

�To whom correspondence should be addressed.



Abstract

Several computer algorithms now exist for discovering multiple mo-
tifs (expressed as weight matrices) that characterize a family of protein
sequences known to be homologous. This paper describes a method
for performing similarity searches of protein sequence databases us-
ing such a group of motifs. By simultaneously using all the motifs
that characterize a protein family, the sensitivity and speci�city of
the database search are increased. We de�ne the p-value for a tar-
get sequence to be the probability of a random sequence of the same
length scoring as well or better in comparison to all the motifs that
characterize the family. (The p-value of a database search can be
determined from this value and the size of the database.) We show
that estimating the distribution of single motif scores by a Gaussian
extreme value distribution is insu�ciently accurate to provide a useful
estimate of the p-value, but that this de�ciency can be corrected by
reestimating the parameters of the underlying Gaussian distribution
from observed scores for comparison of a given motif and sequence
database. These parameters are used to calculate an \reduced vari-
ate" which has a Gumbel limiting distribution. Multiple motif scores
are combined to give a single p-value by using the sum of the reduced
variates for the motif scores as the test statistic. We give a computa-
tionally e�cient approximation to the distribution of the sum of inde-
pendent Gumbel random variables and verify experimentally that it
closely approximates the distribution of the test statistic. Experiments
on pseudorandom sequences show that the approximated p-values are
conservative, so the signi�cance of high scores in database searches
will not be overstated. Experiments with real protein sequences and
motifs identi�ed by the MEME algorithm show that determining an
overall p-value based on the combination of multiple motifs gives sig-
ni�cantly better database search results than using p-values of single
motifs.

Keywords: protein motifs; pro�les; score p-values; score normalization;
extreme-value distributions; sum statistics
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1 Introduction

Searching databases of protein or DNA sequences for known pat-
terns has become a matter of course in molecular biology. Many methods
for doing this involve calculating a similarity score between the pattern and
each sequence in the database. Commonly used patterns include sequences
[Pearson, 1990; Altschul et al., 1990; Smith and Waterman, 1981], aligned
blocks of sequences [Pietrokovski et al., 1996], pro�les [Gribskov et al., 1990]

and regular expressions (Prosite signatures) [Bairoch, 1995]. Another type of
pattern is the motif model [Bailey and Elkan, 1994]. A motif model describes
a (gapless) sequence pattern by specifying the probability of each letter in
the alphabet at each position of the motif. For instance, a protein pattern
of width w would have a motif model with w columns each containing 20
entries, one for each of the 20 amino acid residues that could occur at each
position in a protein pattern. Motif models are thus a kind of weight ma-
trix. They are usually converted into \log-odds" matrices by dividing each
frequency in each column by the background frequency of the corresponding
letter and taking the logarithm. Motifs are a generalization of consensus
sequences [Stormo, 1990] and a specialization of pro�les to cases where the
gap opening costs are in�nite.

The main goal of searching a sequence database with a pattern is to
sort the database according to the degree to which the sequences match the
pattern. Most often, this similarity is interpreted as evidence of homology{
common evolutionary ancestry. In other cases it can be viewed as an indica-
tion of common function or convergent evolution. A secondary, but extremely
desirable, goal of a sequence database search is to assign to each sequence
an estimate of the likelihood that the degree of match to the pattern is truly
signi�cant. One way of answering this question is to assert that a score is
(very) signi�cant if it is (very) unlikely to have arisen by chance. This is
generally taken to mean that we want to know the p-value of score x{the
probability that a random sequence would have score equal to or greater
than x. The model for a random sequence is usually the independence (iid)
model{all positions in the sequence have the same letter distributions and
are independent of each other.

For the p-value of a score to be well de�ned, we must decide whether or
not we wish to consider the length of the sequence. Longer random sequences
have higher average scores than shorter sequences using search patterns of
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the types we have mentioned because longer sequences have more positions.
However, if we assume that each sequence in the database is equally likely
a priori to match the pattern, then the de�nition of the p-value of score x
becomes \the probability that a random sequence of the same length would
have score equal to or greater than x." Experience has shown that scores
compensated for sequence length generally sort the database more accurately,
so this latter de�nition is used in this paper.

The p-values of sequence scores can be used to achieve both the above
goals of sequence database searching. We de�ne the p-value of a sequence to
be the p-value of its match score to the pattern in question. Since the p-value
of a sequence is a measure of the degree to which the sequence matches the
pattern, it is reasonable to sort the database according to p-values, satisfying
our �rst goal. To satisfy the second goal of determining the sign�cance of
a match between a target sequence and a pattern in a database search, we
must take into account the number of sequences in the database. One way
to do this is to multiply the p-value of the target sequence by the number
of sequences in the database. This gives the expected number of sequences
which would have as good or better a p-value in a random database of the
given size. Alternatively, we can compute pdb, the probability of at least
one sequence having as good or better a p-value in a database of random
sequences. If p is the p-value of the target sequence and n is the number of
sequences in the database being searched, then pdb is given by

pdb = 1 � (1 � p)n:

Either of these methods can be used to evaluate the signi�cance of the ob-
served scores in a database search.

The focus of this paper is on calculating p-values for multiplemotif scores.
Multiple motifs are groups of motifs that together de�ne a pattern. For
example, a multiple alignment of a family of distantly related proteins will
often show a few regions of high similarity separated by regions were insertion,
deletion and mutation events have been more frequent. Each of the regions
of high similarity describes a motif for which a model can be constructed.1

The multiple motifs present in a family of sequences can be viewed as a

1Computer algorithms such as MEME [Bailey and Elkan, 1995], the Gibbs sampler
[Lawrence et al., 1993] and Protomat [Heniko� and Heniko�, 1991] exist to assist in the
automatic construction of motif models.
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pattern that de�nes the family. The presence or absence of each motif in
a target sequence is evidence for or against its membership in the family.
Since each motif gives an independent measure of membership in the family,
combining the scores for each of the motifs de�ning a familywill often be more
e�ective at separating the members of the family from all other sequences in
a database search.

We �rst develop a method for calculating p-values of single motif scores
and test it on simulated sequence data. We then extend the method to the
case of multiple motifs and test it on simulated sequence data. Finally, we
validate the method on actual sequence and motif data.

2 Approximate distribution of single motif

scores

We want to know what the distribution of scores is for random sequences
of di�erent lengths when compared to a given motif model. We de�ne the
score of a sequence as the maximum score of any of its subsequences. To
calculate this sequence score, we imagine sliding the motif log-odds matrix
along the sequence. At each position, we calculate the subsequence score by
summing one value from each column of the matrix. The value to be summed
is determined by the letter at that position in the sequence. These de�nitions
are summarized below in Eqns. (1) and (2).

Suppose we have a motif log-odds matrix S of width W and a sequence
X of length L. The score given for letter a appearing at position i of an
occurrence of the motif is Sa;i. Let X(i) be the letter at position i in the
sequence. For each position 1 < i < L � W + 1 along the sequence, we
compute the subsequence scores

S(X; i) =
WX
j=1

SX(i+j�1);j: (1)

S(X; i) is thus the comparison score for the match between the motif model
and the subsequence of X beginning at position i. The sequence score for
sequence X is its maximum subsequence score,

M(n) = max
1�i�n

S(X; i); (2)
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where n = L�W + 1 is the number of positions where an occurrence of the
motif would �t without overhanging one of the ends of the sequence.

Goldstein and Waterman [1994] showed that the maximum score of a mo-
tif model against a single random sequence has a limiting Gaussian extreme
value distribution (GEV). This can be understood intuitively in the follow-
ing manner. We make two simplifying assumptions. First, we assume that
the subsequence scores at each position along the sequence are independent.2

Second, we assume that the subsequence scores are normally distributed with
mean � and standard deviation �. Under these assumptions, the sequence
score M(n) is a random variable with a Gaussian extreme value distribution.
Since M(n) is the maximum of n iid N(�; �) random variables, the formula
for the reduced variate T (n) for M(n) is [Kinnison, 1985]

T (n) =
M(n)� u(n)

a(n)
(3)

where3

u(n) = � + �(
q
2 ln(n)�

ln(ln(n)) + ln(4�)

2
q
2 ln(n)

); (4)

and

a(n) =
�q

2 ln(n)
: (5)

We can now write an expression for the average maximum score for a
sequence of length L. It is the expected value of M(n),

E[M(n)] � u(n) + 
a(n); (6)

where gamma is Euler's constant 0:5772156649 : : :. This formula gives the
expected score of a sequence of length L = n+W � 1.

2For a random sequence, this is strictly true only for the subsequence scores of positions
in the sequence separated by W or more.

3Throughout this paper, ln(x) is the natural logarithm of x, whereas log(x) refers to
the base-10 logarithm of x.
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All that is necessary to compute E[M(n)] is the mean � and variance
�2 of the subsequence scores S(X; i). Suppose we estimate � and �2 by the
sample mean

�̂ =
NX
i=1

Li�W+1X
j=1

S(Xi; j)

m
; (7)

and sample variance

�̂2 =
NX
i=1

Li�W+1X
j=1

(S(Xi; j)� �̂)2

m� 1
; (8)

of subsequence scores for a given motif model on a given dataset, where each
Xi is a sequence, Li is its length, and m is the total number of subsequence
scores S(Xi; j) summed in the calculation of �̂.

Empirical studies using many di�erent motif models and many di�erent
pseudorandom sequence datasets show that, using (7) and (8), respectively,
as estimates of the mean and variance, Eqn. (6) is a poor estimate of the
score of an average sequence even when all the sequences are very long. This
is because the results of Goldstein and Waterman [1994] are asymptotic in
the width, W , of the motif, not just in the lengths of the sequences being
searched. However, if we are willing to adjust our estimates of � and �
slightly, the expression for E[M(n)] in Eqn. (6) can be �t to the observed
data. This suggests that the sequence scores are following a Gaussian extreme
value distribution with slightly di�erent underlying mean and variance.

Figure 1 illustrates the discrepancy between the mean sequence score
predicted by Eqn. (6) and the observed mean sequence score, as a function
of motif width. The error in the mean sequence score is normalized for
motifs of di�erent widths by dividing by the observed standard deviation of
the sequence scores. That is, we de�ne the error as

E[Ŵ (n)]� �seq
�seq

;

where E[Ŵ (n)] is the predicted mean score using the subsequence score sam-
ple mean and standard deviation, �̂ and �̂, and �seq and �seq are the sequence
score sample mean and standard deviation. The graph illustrates that the
error in the predicted mean sequence score using the GEV approximation is
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Figure 1: Error in the mean sequence score predicted by the GEV

approximation as a function of motif width. The error is in units
of the sample standard deviation of the sequence score for a given motif
width. Each point represents the average discrepancy between the predicted
and observed mean sequence score for 100 pseudorandom sequences each of
length 2000 in comparison with motifs of di�erent widths. The averages and
1 standard deviation error bars are sample statistics from 100 repetitions of
the experiment with distinct sets of pseudorandom sequences. The source of
the motifs is described in the text.
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quite large for motifs narrower than 50 residues, which is the range where
most biologically interesting motifs are found. The error is negative indicat-
ing that the GEV approximation consistently underestimates the mean se-
quence score. As predicted by theory, the error approaches zero as the motif
width increases.4 The data shown in Figure 1 are typical, and were gen-
erated using 100 pseudorandom sequences each of length 2000 with residue
frequencies the same as in SWISS-PROT release 31. The motifs were created
by truncating or duplicating and shu�ing the columns of the motif used in
Goldstein and Waterman [1994].

The idea of �tting the equation for the mean of a GEV (Eqn. 6) to the
observed sequence scores illustrated in Figure 2. Each data point represents
the observed mean score of twenty randomly generated sequences of the given
length when compared to a motif model of width 13. The lower curve is
E[M(n)] using the initial estimates (sample mean and variance) for � and
�2 given in Eqns. (7) and (8). It badly underestimates the observed mean
scores. The upper curve is the result of �tting the formula for E[M(n)] in
Eqn. (6) to the observed data by adjusting the values of � and �2. This was
done using the Levenberg-Marquardt non-linear least squares curve-�tting
algorithm [Press et al., 1986]. The goodness-of-�t for the �tted curve is
0.366, indicating that Eqn. (6) models the data well when we adjust the
estimates of the mean and variance of the subsequence scores to agree with
the observed distribution. As can be seen in the �gure, the magnitude of
the error in the predicted mean sequence score for a motif of typical width
is substantial.

Because the expression for mean sequence scores as a function of sequence
length �ts the observed data well if we adjust the underlying values of mean
and variance, we hypothesize that the true distribution of sequence scores is
approximately the distribution of a GEV with the adjusted values of mean
and variance. If this is true, then we would expect using this adjusted GEV
distribution to give good estimates for the p-values of sequence scores.

The approximate p-value of a GEV can be calculated as follows. If M(n)
has an extreme value distribution and T (n) is the corresponding reduced

4Eqn. (6) is almost perfectly accurate at predicting the mean of a true GEV. Sampling
10000 times from a GEV distribution with n = 2000 gave an observed error (normalized
by the observed standard deviation of the GEV, as above) of less than 0.0001. This shows
that the error in the estimate is due to the non-gaussian nature of subsequence scores, not
the size of n.
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Figure 2: Mean sequence score as a function of sequence length.

The data points are the mean score of twenty pseudorandom sequences of
the given length using a typical motif of length 13. The lower curve is the
theoretical mean of a GEV using the sample mean and sample variance of
the subsequence scores as � and �2, respectively. The upper curve is the
result of a least-squares �t of the theoretical curve to the data, using � and
� as the parameters to �t.
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variate, then, when n is large,

Pr(M(n) � m(n)) � 1� exp(�e�t(n)); (9)

where m(n) is the observed value of M(n), and t(n) is the observed value of
T (n) [Kinnison, 1985].

Eqn.(9) is known to converge only slowly with increasing n [Hall, 1980].
The speed of convergence is studied in Figure 3. Each curve in the �gure was
created by sampling 100,000 times from a GEV distribution with the stated
value of n. For each value of n tried, the p-value of each GEV sample was
calculated according to Eqn.(9), and the number of scores whose estimated
p-value was less than or equal to 1�10�6; 2�10�6; 4�10�6; : : : ; 1:0 was counted.
Each curve is the average of ten random repetitions of this procedure for a
particular value of n. We would expect all the curves to lie on the line x = y
if Eqn.(9) were exact. For instance, in 100,000 random GEV samples, we
would expect to see about ten scores with p-values of less than or equal to
10�4, but only about one is observed (observed frequency is approximately
10�5) on average in this experiment when n = 1000. All the curves lie above
x = y which indicates that the approximation yields p-values that are too
large. This is preferable to the opposite situation wherein that relatively
unsurprising events would be assigned high signi�cance. It is clear from the
�gure that GEV p-value estimates are fairly conservative even when n is
quite large compared to the length of typical DNA and protein sequences.

We can use Eqn. (9) to compute the approximate probability (p-value)
of observing a sequence score of at least m(n) for a random sequence of
length n = L �W + 1. We will refer to the p-value approximation based
on the sample mean and standard deviation as the \unadjusted GEV p-
value approximation", and that based on the values of � and � calculated by
�tting the formula for E[M(n)] to the observed mean sequence scores as the
\adjusted GEV p-value approximation".

To test and compare the accuracy of the two p-value approximations,
we conducted tests on pseudorandom sequences. We created a dataset con-
taining N = 100; 000 sequences of lengths varying uniformly from 10 to 1000
characters where each position was iid with the residue frequencies of SWISS-

PROT release 31. The comparison score for each sequence in the dataset and
a motif model was calculated, the E[M(n)] curve �t to the scores to get ad-
justed values for � and �, the p-value of the score estimated using Eqn. (9),
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Figure 3: Accuracy of the extreme value distribution for various

values of n. Each curve plots the observed frequency of randomly generated
GEV samples whose p-value according to Eqn. (9) was less than or equal to
the value on the x-axis. A true GEV with parameter n was sampled 100,000
and the number of p-values less than or equal to chosen values counted. This
was repeated ten times for each value of n. Error bars are one standard
deviation above and below the mean results of the ten trials. Error bars are
not shown when the standard deviation exceeds the mean observed frequency.
If Eqn. (9) were perfect, all curves would lie on the line x = y.
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quantity mean (sd)
sequences per dataset 34 (36)
dataset size 12945 (11922)
sequence length 386 (306)
shortest sequence 256 (180)
longest sequence 841 (585)
pattern width 12.45 (5.42)

Table 1: Overview of the 75 Prosite datasets. Each dataset contains
all protein sequences (taken from SWISS-PROT version 30) annotated in the
Prosite database as true positives or false negatives for a single Prosite family.
Dataset size and sequence length count the total number of amino acids in
the protein sequences. The Prosite families used in the experiments are:
PS00030, PS00037, PS00038, PS00043, PS00060, PS00061, PS00070, PS00075, PS00077,
PS00079, PS00092, PS00095, PS00099, PS00118, PS00120, PS00133, PS00141, PS00144,
PS00158, PS00180, PS00185, PS00188, PS00190, PS00194, PS00198, PS00209, PS00211,
PS00215, PS00217, PS00225, PS00281, PS00283, PS00287, PS00301, PS00338, PS00339,
PS00340, PS00343, PS00372, PS00399, PS00401, PS00402, PS00422, PS00435, PS00436,
PS00490, PS00548, PS00589, PS00599, PS00606, PS00624, PS00626, PS00637, PS00639,
PS00640, PS00643, PS00656, PS00659, PS00675, PS00676, PS00678, PS00687, PS00697,
PS00700, PS00716, PS00741, PS00760, PS00761, PS00831, PS00850, PS00867, PS00869,
PS00881, PS00904 and PS00933.
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and the number of scores whose estimated p-value was less than or equal to
1 � 10�6; 2 � 10�6; 4 � 10�6; : : : ; 1:0 counted. If the p-value estimate is good, we
would expect the fraction of sequences having p-value x or less to be equal to
x. We performed this experiment for 75 motif models generated by the motif
discovery program MEME [Bailey and Elkan, 1995] on 75 distinct protein
datasets. Each dataset consisted of all the SWISS-PROT sequences speci-
�ed as belonging to a single Prosite family. The datasets are summarized in
Table 1.

The results of these experiments are shown in Figure 4. Two of the
curves show the results of using the unadjusted GEV and adjusted GEV p-
value approximations. The third curve shows the result of sampling from true
GEV distributions and calculating the p-values of the observations using the
known mean and standard deviation of the underlying Gaussian distribution
and Eqn. (9). For this curve, one true GEV sample was taken for each
sequence in the pseudorandom dataset. The true GEV sample corresponding
to a sequence of length n was generated by sampling n times from a standard
normal distribution and taking the maximum of the observations. The line
x = y is also given in the �gure for reference.

The unadjusted GEV p-value curve in Figure 4 lies entirely below the line
x = y, indicating that the observed frequency of high scores is consistently
higher than the p-value approximation would predict. This is undesirable
because it means that the unadjusted GEV p-values tend to greatly overes-
timate the statistical signi�cance of scores, making matches seem more sur-
prising than they truly are. On the other hand, the adjusted GEV p-value
curve lies entirely on or above the line x = y, indicating that the adjusted
GEV p-value estimates are conservative. Finally, the curves for the adjusted
GEV p-value approximation and true GEV sample p-values are almost iden-
tical. This con�rms the hypothesis that the sequence scores have essentially
a GEV distribution with di�erent values of � and �.

Based on this large sample of protein family motifs, we conclude that
the adjusted GEV p-values are a reliable and conservative way to estimate
the statistical signi�cance of sequence scores. It is clear from Figure 4 that
the error in score p-values computed using the adjusted GEV estimate is
entirely due to the fact that Eqn (9) is only the limiting distribution of
a reduced variate, not the exact distribution. The adjustment procedure
removes virtually all e�ect of the assumption that the (discrete) sequence
scores have a Gaussian extreme value distribution. The adjusted estimate is
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Figure 4: Observed frequency of scores with p-values below a given

value versus unadjusted GEV, adjusted GEV and true GEV p-

values. Points above the line x = y underestimate the statistical signi�cance
of scores, below the line overestimate score signi�cance. The unadjusted GEV
and adjusted GEV curves show the result of 75 tests each of which used a
single, di�erent motif to score 100,000 pseudorandom protein sequences. The
true GEV curve shows the results of ten trials, each of which sampled true
GEV distributions once for each sequence in the dataset, using n equal to
the length of the corresponding sequence in the dataset. Error bars are one
standard deviation above and below the mean. Error bars are not shown
when the standard deviation exceeds the mean observed frequency. The
average (standard deviation) motif width was 13.57 (7.22). The smallest
motif width was 5 and the largest was 49.
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very accurate for p-values greater than 10�2 and becomes progressively more
conservative for smaller p-values. In contrast, the unadjusted GEV p-values
consistently overestimate the statistical signi�cance of sequence scores.

3 Approximate distribution of multiple mo-

tif scores

This approach for computing p-values can be extended to multiple motifs.
Suppose we have r motifs and we compute scores Si(n), maximum scores
Mi(n) and reduced variates Ti(n) as in Eqns. (1), (2) and (3). A natural test
statistic is the sum of the reduced variates,

Cr(n) =
rX

i=1

Ti(n): (10)

This statistic combines the evidence from each of the motif scores and will be
large when the sum of the scores is large. It is analogous to the sum statistics
often used for evaluating multiple high scoring segments in pairwise sequence
comparisons [Altschul and Gish, 1996].

To use Eqn. (10) for computing p-values, we need to know the distri-
bution of Cr(n). We will show that it is approximately that of the sum
of independent Gumbel random variables.5 A Gumbel random variable has
density function

f(x) = exp(�x� e�x): (11)

The distribution of the sum of r independent Gumbel random variables,
C =

Pr
i=1 xi, where y =

Pr�1
i=1 xi and z =

Pr�1
i=1 e

�xi, can be written as

Pr(C � x) =
Z
: : :
Z
y+xr�x

rY
i=1

f(xi)dx1 : : : dxr

=
Z 1
�1

: : :
Z 1
�1

r�1Y
i=1

f(xi)
�Z 1

x�y
f(xr)dxr

�
dxr�1 : : : dx1

5The Gumbel distribution has cumulative distribution function F (x;�; �) =
exp(�e(x��)=�), where �1 < � < 1 and � > 0. In this paper, all references to the
Gumbel distribution are for � = 0 and � = 1. In that case, the cumulative distribution
function is, simply, F (x) = exp(�e�x).
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=
Z 1
�1

: : :
Z 1
�1

r�1Y
i=1

f(xi)[1� exp(�ey�x)]dxr�1 : : : dx1

=
Z 1
�1

: : :
Z 1
�1

e�y�z [1� exp(�ey�z)]dxr�1 : : : dx1: (12)

By rearranging Eqn. (9), it is easy to verify that the limiting distribution for
reduced variates such as Ti(n) has the Gumbel density of Eqn. (11). If the
underlying motif scores Si(n) are independent, the limiting distribution of
Cr(n) is that of the sum of independent Gumbel random variables. Empirical
evidence presented below using actual motifs and pseudorandom sequences
will show that this independence assumption is justi�ed in practice.

Eqn. (12) is expensive to compute for large r due to the multiple integra-
tions required, but Figure 5 shows that it behaves as

Pr(C � x) �
e�xxr�1

(r � 1)!
(13)

when x, the observed value of C, is greater than r � 1. For 2 � r � 6 and
x > r�1, when Eqn. (13) gives a p-value of less than 0.23, it is always within
39 percent of the correct value. This means that small p-values{those of most
interest{are accurately approximated using Eqn. (13). The accuracy of the
estimate improves as x increases (and the p-value decreases), and is extremely
good for small values of r. Extrapolating from Figure 5, the estimate will
remain approximately within a factor of two of the correct p-value for large
x even when r is as large as ten.

We saw that p-values of observations of a single GEV random variable,
calculated using the limiting distribution, become increasingly conservative
with increasing observed values (see Figure 3). Figure 6 shows that the
behavior of Eqn. (13) for the sum of reduced variates of independent GEV
random variables is essentially identical to that of Eqn. (9) for a single GEV
random variable. In particular, for su�ciently large observed values (x), the
approximation in Eqn. (13) predicts the true p-value of the observed sum
of reduced variates as well as Eqn. (9) predicts the p-value of a single GEV
random variable. For example, the p-value of the sum of �ve independent
GEV random variables is as accurately predicted as the p-value of a single
GEV when the p-value is less than 0.1 (� log(p-value) = 1 in Figure 6).
Each curve in the �gure was produced by sampling from the given number
of independent GEV distributions, computing reduced variates according to
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percent error in the approximate distribution of the sum of r indepen-
dent Gumbel random variables given by Eqn. (13) for values of the the
sum from zero to thirty. The correct value for the distribution was com-
puted by numerically integrating Eqn. (12). Percent error is de�ned as
100 � (Eqn: (13)� Eqn: (12))=Eqn: (12):
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Figure 6: Accuracy of the approximate distribution of the sum of

independent Gumbel random variables for combining GEV random

variables. Each curve plots the observed frequency of the sum of the reduced
variates of r independent GEV random variables whose p-value according to
Eqn. (13) was less than or equal to the value on the x-axis. One, three or
�ve GEV's with parameter n = 100 were sampled, their reduced variates
were summed and the p-value of the sum was computed. This was repeated
100,000 times and the number of p-values less than or equal to chosen values
counted. This procedure was repeated ten times and averaged for each value
of r. For comparison, the curve labeled GEV shows the results for r = 1
when the p-value is computed using Eqn. (9). Error bars are one standard
deviation above and below the mean results of the ten trials. Error bars are
not shown when the standard deviation exceeds the mean observed frequency.
If Eqn. (13) were perfect, all curves would lie on the line x = y.
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Eqn. (3), taking their sum, computing the p-value corresponding to the sum
(x) using Eqn. (13), and plotting the observed frequency of samples with
p-values in di�erent ranges as in Figure 3.

Replacing C with Cr(n) in Eqn. (13) gives a computationally tractable
way to estimate the p-value of the combined scores of matches of a single
sequence to a group of motifs. We compute adjusted reduced variates Ti(n)
for each motif score independently, and use their sum as x in Eqn. (13).
We will refer to this method of computing p-values as the \sum-of-reduced-
variates" p-value approximation in what follows.

To test the accuracy of this method of estimating the p-values of multiple
motif scores, we conducted tests analogous to the tests described earlier for
single motif scores. We used the same database of 100,000 pseudorandom
protein sequences of varying lengths and the �rst �ve motifs found by MEME

in the 75 training sets. Each motif from a single run of MEME was used to
independently score each sequence in the database. For each motif, its scores
were used to calculate adjusted values for its mean and variance as in the
single motif case. For each sequence, its scores for comparison to the �ve
motifs and the �ve adjusted (�, �) pairs were used to calculate �ve reduced
variates Ti, i = 1; : : : ; 5. The sums Cr for r = 1, 3 or 5 were then used with
Eqn. (13) to calculate the p-values for the comparison scores of the sequence
and the �rst, �rst three, and �rst �ve motifs reported by MEME for a given
protein family.

The results of this test of using Eqn. (13) to estimate the p-values of
multiple motif scores is given in Figure 7. The results are highly similar
to those for single motif scores (compare with the adjusted GEV curve in
Figure 4). All the curves lie above the line x = y, showing that the predicted
p-values are conservative. The trends of the three curves indicate that the
predicted p-values based on the GEV assumption become more conservative
as they become smaller. As the number of motif scores being combined
increases, the p-value estimates improve and become more accurate over
a wider range of p-values. Predicted p-values near 10�5 are of particular
interest since current protein sequence databases contain on the order of
105 sequences. At a predicted p-value of 10�5, the observed frequencies of
sequences in Figure 7 are approximately factors of 100, 10 and 5 smaller than
predicted (more conservative) for one, three and �ve motifs, respectively.

19



0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

-lo
g(

ob
se

rv
ed

 fr
eq

ue
nc

y)

-log(p-value)

1 motif
3 motifs
5 motifs

x=y

Figure 7: Observed frequency of scores with p-values below a given

value versus sum-of-reduced-variates p-values for multiple motif

scores. Points above the line x = y underestimate the statistical signi�-
cance of scores, below the line overestimate score signi�cance. Curves show
average results of 75 experiments using groups of one, three and �ve motifs.
Each experiment used the motifs from a single ofMEME on one of 75 datasets
to score 100,000 pseudorandom protein sequences. Error bars are one stan-
dard deviation above and below the mean of the 75 experiments and are not
shown if the standard deviation exceeds the observed frequency. The mean
width of the motif models was approximately 15 with a standard deviation
of about 8.
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4 Validation of the method on real protein

sequences

We conducted experiments to answer two questions. Firstly, does sorting
by multiple motif p-value better separate homologs from non-homologs than
sorting by \raw" score? Secondly, does using multiple motifs improve the
sensitivity and selectivity of the homology search? By \raw" score in the
�rst question we mean the sum of the sequence score for each of a group of
motifs in comparison with a given sequence.6 We therefore de�ne the \raw"
score of a sequence in comparison with a group of motifs to be

maxsum =
rX

i=1

Mi(n):

Answering these questions requires sets of motifs for a number of protein
families, a protein database to search, and a methodology for comparing the
quality of an ordering of the sequences in the search database. We used the
same 75 protein families as before and used the MEME program to discover
�ve motifs for each family. As the search database, we used SWISS-PROT

release 30 [Bairoch, 1994]. To measure the quality of a sort, we chose the
ROC50 metric described in [Gribskov and Robinson, 1996]. ROC metrics
have the virtue that they combine measurements of the sensitivity and selec-
tivity of a search method into a single number. The ROC50 metric considers
only the top of the sort down to the �ftieth non-family member. The metric
has a value of 1 if all the true family members come before any non-family
members in a sort of the sequences in the database. It has the value 0 if 50
non-family members appear before the �rst family member.

The results of these experiments shown in Figures 8 and 9 and in Table 2
demonstrate that using multiple motif p-values is superior to using maxsum,
and using multiple motifs improves the quality of homology searches. The
results do not support the conclusion that length normalization improves
the quality of database searches using motif models. We explain how these
conclusions are supported by the experimental results in the following para-
graphs.

Figure 8 shows that, when a single motif is used to classify the sequence
database, there is no di�erence between sorting by p-value and sorting by

6Since motif scores are log-odds scores it makes sense to add them.
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Figure 8: Comparison of sorting sequences by p-value and raw score.

The plots show average ROC50 versus number of motifs when two di�erent
methods of scoring (p-value or maxsum) are used.
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Number of Motifs

1 2 3 4 5
1 + + + +
2 � � +
3 � +
4 +

Table 2: Statistical signi�cance of the improvement in the ranking

function using multiple motifs. Each row compares searching using
a given number of motifs (the row number) with using a larger number of
motifs (the column number). A \+" indicates that using more motifs was
statistically signi�cant at the P = 0:05 level according to a paired t-test. A
\�" indicates that the improvement was not statistically signi�cant.
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maxsum score. However, when multiple motifs characteristic of a protein
family are used, the estimated p-value computed by the sum-of-reduced-
variates method sorts the database better. This can be seen from the higher
values of average ROC50 for the curve labeled \p-value" in the �gure. The
higher ROC indicates that the actual family members are appearing sooner
in the sorted list of sequences when the sort is based on p-value than when it
is based on maxsum score. This shows the clear advantage of using p-values
rather than maxsum scores for homology searches using multiple motifs.

The di�erence in the quality of the sorting of the sequence database using
the two methods (p-value vs. maxsum) is signi�cant at the P = 0:05 level
according to a paired t-test when more than one motif is being used. This
is shown in Figure 9. The �gure shows the measured value of the t-statistic
comparing ROC50 using the two di�erent sorting methods for each of the 75
datasets. The horizontal line shows the P = 0:05 signi�cance level. When
two or more motifs describing a family are used, p-value is signi�cantly better
than maxsum score at sorting the database of sequences.

Figure 8 also shows that the value of ROC50 when the sequence database
is sorted by p-value improves as more motifs characteristic of a particular
protein family are combined. We tested the statistical signi�cance of the
di�erences in ROC50 when various numbers of motifs were used for scoring
the sequences. Using more than one motif is always signi�cantly better (P =
0:05) than using a single motif (refer to Table 2). With these datasets, most
of the information appears to be in the �rst two motifs generated by MEME

because including the third or fourth motifs did not give signi�cantly better
results. Each motif however adds a little information, and using �ve motifs
is signi�cantly better than using only the �rst two.

This coincides with what one would expect given the nature of the MEME

algorithm. MEME takes as input a set of sequences believed to be homologous
and returns a collection of motifs each of which describes a pattern present in
two or more of the sequences. The collection of motifs is ordered according to
a statistical measure that combines the width, coverage (number of sequences
containing the pattern) and strength (information content) of the pattern.
In the protein families used here, the �rst motif returned byMEME is usually
present in all or most of the sequences in the family. Later motifs may be
present in only a small subset of the sequences. It is therefore to be expected
that the �rst motifs are most descriptive of the familywith later motifs adding
relatively little information. This is con�rmed by the decreasing improvement
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in search performance using more than two motifs seen in Figure 8 and
Table 2.

5 Discussion

The problem of assigning statistical signi�cance to similarity scores is a re-
curring one in computational biology. It arises when searching sequence
databases using a single sequence as a probe, as well as when comparing one
or more sequences to a probe consisting of a set of motifs, blocks or patterns
that characterize a sequence family. Raw similarity scores may be su�cient
to order sequences with respect to similarity, but do not answer the impor-
tant question of whether the apparent similarity is likely to be due to chance.
One way to answer this question is to determine the distribution of similarity
scores of random sequences scored against the probe.

For some types of similarity scores it has been possible to derive theoreti-
cal probability distributions for similarity scores of random sequences. Most
notably, the distribution of the maximal segment pair (MSP) scores used by
the BLAST algorithm [Altschul et al., 1990] can be calculated directly from
the scoring matrix and the assumed distribution of residues in the sequence
database. The distribution of MSP scores is quite di�erent than that of mo-
tif scores, so the theory is not directly applicable. As shown in Goldstein
and Waterman [1994], motif scores can be expected (in the limit of motif
width and sequence length) to have a Gaussian extreme value distribution.
We have shown in this study that this theoretical distribution is not su�-
ciently accurate to be of use with motifs typical of protein sequence families,
especially when the motifs are short (fewer than 50 columns). Furthermore,
our results show how to combine multiple motif scores for a single sequence
compared to a group of motifs that characterize a protein family.

When it has not been possible to derive a theoretical distribution for
similarity scores, an empirical, curve-�tting approach is often used [Krogh
et al., 1994; Pearson, 1990; Gribskov et al., 1990]. The general idea is to
calculate the similarity scores of a large number of sequences compared with
the probe and then �t a curve to the observed (sequence length, sequence
score) pairs after removing outliers (which are presumed to be true positives
and hence not \random".) This curve can then be used to estimate the
parameters of the score distribution.
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The approach we have taken in this study combines the theoretical and
empirical methods described above. The method is based on �tting the
formula for the mean of a Gaussian extreme value distribution to observed
motif scores in order to estimate the parameters of the underlying distribu-
tion. These parameters are then used to calculate a \reduced variate" whose
limiting distribution is the Gumbel distribution. Multiple motif scores are
combined to give a single p-value by using the sum of the reduced variates
for the motif scores as the test statistic. We have demonstrated an e�cient
way of estimating the distribution function of this statistic, as well as of com-
puting the distribution of the sum of independent Gumbel random variables.
Our method takes the length of the sequence being scored into account, and
assigns a p-value to a sequence that is the probability of a random sequence
of the same length scoring as well or better than the sequence in question.

The elimination of false positives in protein sequence database searches
is a key concern. Our experiments on pseudorandom sequences show that
the approximated p-values using our hybrid method tend to be conservative.
This insures that the signi�cance of database searches will not be overstated.
These experiments also show that, as the number of motifs being used in
a search increases, the accuracy of the p-value estimate improves while still
remaining conservative. This shows that the p-values of (groups of) scores
can reliably used to discriminate between true similarities and those that are
likely to have occurred by chance.

We also have shown that the overall sensitivity and selectivity of a search
using multiple motifs is improved when the sequences are sorted by p-value
computed by our method rather than by the sum of the raw scores (maxsum

score) for each motif. This e�ect increases as the number of motifs in the
group whose scores are being combined increases. Converting raw scores to
reduced variates before summing them has the e�ect of making all motifs
\equal". When raw scores are summed, wider, more information-rich motifs
contribute more to the total score. This means that true family members
that do not contain a particular wide motif (possibly a motif characteristic
of only part of the family) may have low maxsum scores but will still receive
\good" (i.e., low) p-values.

Finally, our experiments show that using multiple motifs gives signi�-
cantly better database search results than using single motifs. This is not
surprising, since multiple motifs contain more information characteristic of
the protein family than do single motifs. Additional information, which the
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method we present here does not take into account, is contained in the order-
ing and spacing of the motifs. One would expect improved database search
sensitivity and selectivity if the p-value took the probability of the observed
motif spacing in a sequence (relative to the correct spacing for the family)
into account. We intend to address this issue in future work.
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