Posts tagged ‘genome sequencing’

Genome editing

  1. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 2015 Nov 13;350(6262):823-6. doi: 10.1126/science.aac6572. PubMed PMID: 26564855.
  2. Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, Buchthal J, Kowal EJ, Ebrahimkhani MR, Collins JJ, Weiss R, Church G. Cas9 gRNA engineering for genome editing, activation and repression. Nat Methods. 2015 Nov;12(11):1051-4. doi: 10.1038/nmeth.3580. Epub 2015 Sep 7. PubMed PMID: 26344044.
  3. Reardon S. Leukaemia success heralds wave of gene-editing therapies. Nature. 2015 Nov 12;527(7577):146-7. doi: 10.1038/nature.2015.18737. PubMed PMID: 26560278.
  4. Mathews DJ, Lovell-Badge R, Chan S, Donovan PJ, Douglas T, Gyngell C, Harris J, Regenberg A. CRISPR: A path through the thicket. Nature. 2015 Nov 12;527(7577):159-61. doi: 10.1038/527159a. PubMed PMID: 26560284.
  5. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015 Sep 16.
  6. Weber J, Öllinger R, Friedrich M, Ehmer U, Barenboim M, Steiger K, Heid I, Mueller S, Maresch R, Engleitner T, Gross N, Geumann U, Fu B, Segler A, Yuan D, Lange S, Strong A, de la Rosa J, Esposito I, Liu P, Cadiñanos J, Vassiliou GS, Schmid RM, Schneider G, Unger K, Yang F, Braren R, Heikenwälder M, Varela I, Saur D, Bradley A, Rad R. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc Natl Acad Sci U S A. 2015 Oct 27. pii: 201512392. [Epub ahead of print] PubMed PMID: 26508638.
  7. Carroll D, Charo RA. The societal opportunities and challenges of genome editing. Genome Biol. 2015 Nov 5;16(1):242.
  8. Ma E, Harrington LB, O’Connell MR, Zhou K, Doudna JA. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. 2015 Nov 5;60(3):398-407.
  9. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS,
    Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015 Sep 23. pii: S0092-8674(15)01200-3. doi: 10.1016/j.cell.2015.09.038. [Epub ahead of print] PubMed PMID: 26422227.
  10. Carrington B, Varshney GK, Burgess SM, Sood R. CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Res. 2015 Aug 7. pii: gkv802. [Epub ahead of print] PubMed PMID: 26253739.
  11. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V, Carrington B, Bishop K, Jones M, Li M, Harper U, Huang SC, Prakash A, Chen W, Sood R, Ledin J, Burgess SM. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 2015 Jul;25(7):1030-42. doi: 10.1101/gr.186379.114. Epub 2015 Jun 5. PubMed PMID: 26048245; PubMed Central PMCID: PMC4484386.
  12. Bachu R, Bergareche I, Chasin LA. CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining. Biotechnol Bioeng. 2015 May 5. doi: 10.1002/bit.25629. [Epub ahead of print] PubMed PMID: 25943095.

Genomics

  1. Grün D, van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments. Cell. 2015 Nov 5;163(4):799-810. doi: 10.1016/j.cell.2015.10.039. Review. PubMed PMID: 26544934.
  2. Duttke SH, Lacadie SA, Ibrahim MM, Glass CK, Corcoran DL, Benner C, Heinz S, Kadonaga JT, Ohler U. Human promoters are intrinsically directional. Mol Cell. 2015 Feb 19;57(4):674-84.
  3. Spisák S, Lawrenson K, Fu Y, Csabai I, Cottman RT, Seo JH, Haiman C, Han Y, Lenci R, Li Q, Tisza V, Szállási Z, Herbert ZT, Chabot M, Pomerantz M, Solymosi N; GAME-ON/ELLIPSE Consortium, Gayther SA, Joung JK, Freedman ML. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants. Nat Med. 2015 Sep 23. doi: 10.1038/nm.3975. [Epub ahead of print] PubMed PMID: 26398868.
  4. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M, Konkel MK, Malhotra A, Stütz AM, Shi X, Paolo Casale F, Chen J, Hormozdiari F, Dayama G, Chen K, Malig M, Chaisson MJ, Walter K, Meiers S, Kashin S, Garrison E, Auton A, Lam HY, Jasmine Mu X, Alkan C, Antaki D, Bae T, Cerveira E, Chines P, Chong Z, Clarke L, Dal E, Ding L, Emery S, Fan X, Gujral M, Kahveci F, Kidd JM, Kong Y, Lameijer EW, McCarthy S, Flicek P, Gibbs RA, Marth G, Mason CE, Menelaou A, Muzny DM, Nelson BJ, Noor A, Parrish NF, Pendleton M, Quitadamo A, Raeder B, Schadt EE, Romanovitch M, Schlattl A, Sebra R, Shabalin AA, Untergasser A, Walker JA, Wang M, Yu F, Zhang C, Zhang J, Zheng-Bradley X, Zhou W, Zichner T, Sebat J, Batzer MA, McCarroll SA; 1000 Genomes Project Consortium, Mills RE, Gerstein MB, Bashir A, Stegle O, Devine SE, Lee C, Eichler EE, Korbel JO. An integrated map of structural variation in 2,504 human genomes. Nature. 2015 Oct 1;526(7571):75-81. doi: 10.1038/nature15394.PubMed PMID: 26432246; PubMed Central PMCID: PMC4617611.
  5. Cho MK. Preventive Genomic Sequencing in the General Population: Do PGS Fly? Am J Bioeth. 2015 Jul;15(7):1-2. doi: 10.1080/15265161.2015.1054160. PubMed PMID: 26147253.

Science Magazine Special Issue—Hunting Mutations, Targeting Disease

Statistics

  1. Lo A, Chernoff H, Zheng T, Lo SH. Why significant variables aren’t automatically good predictors. Proc Natl Acad Sci U S A. 2015 Oct 26. pii:201518285. [Epub ahead of print] PubMed PMID: 26504198.

Development

  1. Barsi JC, Tu Q, Calestani C, Davidson EH. Genome-wide assessment of differential effector gene use in embryogenesis. Development. 2015 Sep 28. pii: dev.127746. [Epub ahead of print] PubMed PMID: 26417044.
  2. Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, Cohen T, Xia J, Suderman M, Hallett M, Trasler J, Peters AH, Kimmins S. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015 Nov 6;350(6261):aab2006. doi: 10.1126/science.aab2006. Epub 2015 Oct 8. PubMed PMID: 26449473.

Stem cells

  1. Choi J, Lee S, Mallard W, Clement K, Tagliazucchi GM, Lim H, Choi IY, Ferrari F, Tsankov AM, Pop R, Lee G, Rinn JL, Meissner A, Park PJ, Hochedlinger K. A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 2015 Nov;33(11):1173-1181.
  2. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, Dargitz CT, Wright R, Khanna A, Gage FH, Verma IM. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015 Aug 19. pii: S2211-1247(15)00852-9. doi: 10.1016/j.celrep.2015.07.062. [Epub ahead of print] PubMed PMID: 26299960.

Regeneration

  1. Ueki Y, Wilken MS, Cox KE, Chipman L, Jorstad N, Sternhagen K, Simic M, Ullom K, Nakafuku M, Reh TA. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. Proc Natl Acad Sci U S A. 2015 Oct 19. pii: 201510595. [Epub ahead of print] PubMed PMID: 26483457.

Retina/Photoreceptor

  1. Taylor SM, Alvarez-Delfin K, Saade CJ, Thomas JL, Thummel R, Fadool JM, Hitchcock PF. The bHLH Transcription Factor NeuroD Governs  Photoreceptor Genesis and Regeneration Through Delta-Notch Signaling. Invest Ophthalmol Vis Sci. 2015 Nov 1;56(12):7496-7515.
  2. Hernández-Bejarano M, Gestri G, Spawls L, Nieto-López F, Picker A, Tada M, Brand M, Bovolenta P, Wilson SW, Cavodeassi F. Opposing Shh and Fgf signals initiate nasotemporal patterning of the retina. Development. 2015 Oct 1. pii: dev.125120. [Epub ahead of print] PubMed PMID: 26428010.
  3. Tsujimura T, Masuda R, Ashino R, Kawamura S. Spatially differentiated
    expression of quadruplicated green-sensitive RH2 opsin genes in zebrafish is determined by proximal regulatory regions and gene order to the locus control region. BMC Genet. 2015 Nov 4;16(1):130.
  4. Boije H, Rulands S, Dudczig S, Simons BD, Harris WA. The Independent
    Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the Zebrafish Retina. Dev Cell. 2015 Sep 2. pii: S1534-5807(15)00525-0.
  5. Chow RW, Almeida AD, Randlett O, Norden C, Harris WA. Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development. 2015 Jun 26. pii: dev.122473. [Epub ahead of print] PubMed PMID: 26116662.
  6. Ogawa Y, Shiraki T, Kojima D, Fukada Y. Homeobox transcription factor Six7 governs expression of green opsin genes in zebrafish. Proc Biol Sci. 2015 Aug 7;282(1812). pii: 20150659. doi: 10.1098/rspb.2015.0659. PubMed PMID: 26180064.

Eye disease

  1. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, Ouyang H, Patel SH, Jin X, Lin D, Wu F, Flagg K, Cai H, Li G, Cao G, Lin Y, Chen D, Wen C, Chung C, Wang Y, Qiu A, Yeh E, Wang W, Hu X, Grob S, Abagyan R, Su Z, Tjondro HC, Zhao XJ, Luo H, Hou R, Perry JJ, Gao W, Kozak I, Granet D, Li Y, Sun X, Wang J, Zhang L, Liu Y, Yan YB, Zhang K. Lanosterol reverses protein aggregation in cataracts. Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22. Erratum in:  Nature. 2015 Oct 22;526(7574):595. PubMed PMID: 26200341.
  2. Makley LN, McMenimen KA, DeVree BT, Goldman JW, McGlasson BN, Rajagopal P, Dunyak BM, McQuade TJ, Thompson AD, Sunahara R, Klevit RE, Andley UP, Gestwicki JE. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science. 2015 Nov 6;350(6261):674-7. doi: 10.1126/science.aac9145. PubMed PMID: 26542570.
  3. Commentary: Quinlan RA. DRUG DISCOVERY. A new dawn for cataracts. Science. 2015 Nov 6;350(6261):636-7. doi: 10.1126/science.aad6303. PubMed PMID: 26542559.

Zebrafish

  1. Xu C, Volkery S, Siekmann AF. Intubation-based anesthesia for long-term time-lapse imaging of adult zebrafish. Nat Protoc. 2015 Dec;10(12):2064-2073.
  2. Pauli A, Montague TG, Lennox KA, Behlke MA, Schier AF. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PLoS One. 2015 Oct 5;10(10):e0139504. doi: 10.1371/journal.pone.0139504. eCollection 2015. PubMed PMID: 26436892; PubMed Central PMCID: PMC4593562.

Research Career

  1. Jackson ST. Going where the science matters. Science. 2015 Oct
    30;350(6260):594. doi: 10.1126/science.350.6260.594. PubMed PMID: 26516284.

Medicine

  1. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, Carroll MW, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Hossmann S, Kondé MK, Kone S, Kuisma E, Levine MM, Mandal S, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Watson CH, Kéïta S, Kieny MP, Røttingen JA. Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet. 2015 Aug 29;386(9996):857-66. doi: 10.1016/S0140-6736(15)61117-5. Epub 2015 Aug 3. PubMed PMID: 26248676.

Naked mole rat from Wikipedia

The genome sequence of the naked mole rat is published recently (Kim et al., 2011) ! This is an amazing creature that lives almost up to 30 years in captivity, 9 times longer than mice. At the same time they do not seem to suffer from cancer or a decline in fertility (Buffenstein 2008).

I have been fascinated by the research on the naked mole rats since I read an research article published by Vera Gorbunova’s group in 2009 (Seluanov et al., 2009). In this study, the authors elucidated the naturally occurred anti-cancer mechanism inside this creature. As it turns out, the cells from the naked mole rat will initiate a program to turn off cell growth as soon as the cells start touching each other in culture, a much earlier response than that in regular rats or mice. The most impressive finding is that this early program that can turn off cell growth actually uses the same cell division control mechanisms as in us, but it is just fine-tuned to respond to growth more sensitively. In the new study that sequenced the genome of the naked mole rat, a number of interesting findings have been found and may reveal other aspects of its longevity and physiology for this success and etc. I will save this for your own personal reading.

I find all these results beautiful and  powerfully remind us how studying our nature can lead to potentially important findings that can “translate” to human health; and how the “traditional” clinical research on human and classical animal models can miss the answer that is already out there.

Extended readings

  1. Buffenstein R. Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B. 2008 May;178(4):439-45. Epub 2008 Jan 8. Review. PubMed PMID: 18180931.
  2. Kim EB et al., Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature. 2011 Oct 12. doi: 10.1038/nature10533. [Epub ahead of print] PubMed PMID: 21993625.
  3. Seluanov A et al., Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19352-7. Epub 2009 Oct 26. PubMed PMID: 19858485; PubMed Central PMCID: PMC2780760.