Archive for the ‘Fai’s sharing’ Category

Neuroscience

  1. Robie AA, Hirokawa J, Edwards AW, Umayam LA, Lee A, Phillips ML, Card GM, Korff W, Rubin GM, Simpson JH, Reiser MB, Branson K. Mapping the Neural Substrates of Behavior. Cell. 2017 Jul 13;170(2):393-406.e28. doi: 10.1016/j.cell.2017.06.032. PubMed PMID: 28709004.
  2. Smith K. How to map the circuits that define us. Nature. 2017 Aug 9;548(7666):150-152. doi: 10.1038/548150a. PubMed PMID: 28796220.

Evolution

  1. Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. Evolution of the Human Nervous System Function, Structure, and Development. Cell. 2017 Jul 13;170(2):226-247. doi: 10.1016/j.cell.2017.06.036. Review. PubMed PMID: 28708995.

Genetics

  1. New concerns raised over value of genome-wide disease studies

Cell biology

  1. Biology of single cells shines a light on collaboration. Nature. 2017 Jul 5;547(7661):5. doi: 10.1038/547005a. PubMed PMID: 28682351.

Genomics

  1. Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y, Mendelson Cohen N, Wingett S, Fraser P, Tanay A. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 2017 Jul 5;547(7661):61-67. doi: 10.1038/nature23001. PubMed PMID: 28682332.

Molecular Biology

  1. Lin YL, Pasero P. Transcription-Replication Conflicts: Orientation Matters. Cell. 2017 Aug 10;170(4):603-604. doi: 10.1016/j.cell.2017.07.040. PubMed PMID: 28802036.

Genome editing

  1. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature. 2017 Aug 2. doi: 10.1038/nature23305. [Epub ahead of print] PubMed PMID: 28783728.

Genome editing

  1. Scheufele DA, Xenos MA, Howell EL, Rose KM, Brossard D, Hardy BW. U.S. attitudes on human genome editing. Science. 2017 Aug 11;357(6351):553-554. doi: 10.1126/science.aan3708. PubMed PMID: 28798120.
  2. Amitai G, Sorek R. Intracellular signaling in CRISPR-Cas defense. Science. 2017 Aug 11;357(6351):550-551. doi: 10.1126/science.aao2210. PubMed PMID: 28798118.
  3. Kazlauskiene M, Kostiuk G, Venclovas Č, Tamulaitis G, Siksnys V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science. 2017 Aug 11;357(6351):605-609. doi: 10.1126/science.aao0100. Epub 2017 Jun 29. PubMed PMID: 28663439.

Eye

  1. Madl T. Patchy proteins form a perfect lens. Science. 2017 Aug 11;357(6351):546-547. doi: 10.1126/science.aao1456. PubMed PMID: 28798115.
  2. Cai J, Townsend JP, Dodson TC, Heiney PA, Sweeney AM. Eye patches: Protein assembly of index-gradient squid lenses. Science. 2017 Aug 11;357(6351):564-569. doi: 10.1126/science.aal2674. PubMed PMID: 28798124.

Funding

  1. Levitt M, Levitt JM. Future of fundamental discovery in US biomedical research. Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6498-6503. doi: 10.1073/pnas.1609996114. Epub 2017 Jun 5. PubMed PMID: 28584129; PubMed Central PMCID: PMC5488913.

Yuk Fai Leung participated in the 2017 Developmental Biology Teaching Workshop (DBTW) from 27th June 2017 to 1st July 2017. This workshop was organized by Jennifer Fish from U Mass Lowell, Ian Woods from Ithaca College, and Eric Cole from St. Olaf College. It took place at the Darling Marine Center in Maine.

During this course, the participants studied many animal models for development including sea urchins, zebrafish, chicken, roundworm, flatworm and fruit flies. We focused on learning experiments that can be brought to the teaching lab to enrich student’s learning experience. Here are some pictures of the event:

The Developmental Biology Teaching Workshop, class of 2017.

Course leader Jennifer Fish

Course leader Ian Woods demonstrating zebrafish research.

Guest Instructor Eric Cole

The workshop took place at the beautiful Darling Marine Center.

Fai injected zebrafish embryos free hand with mouth pipetting.

Zebrafish with improper posterior development. Courtesy of 2017 DBTW.

An abnormal fruit fly made by the following transgenic line: dpp-GAL4; UAS-ey. Courtesy of 2017 DBTW.

Neurons in fruit fly larva labelled by green fluorescent protein. Courtesy of 2017 DBTW.

Sea Urchin Larva. Courtesy of 2017 DBTW.

Sea urchin larva 2. Courtesy of 2017 DBTW.

Roundworm. Nuclei labelled by a blue fluorescent dye. Courtesy of 2017 DBTW.

We finished the course with the final animal model–delicious lobsters from Maine!

In May 2017, the Leung lab visited several collaborating groups in Asia and shared with them our research vision on using zebrafish to find new drugs for retinal degeneration. In this blog post, we will share some pictures of our visit to the the Eye Hospital at Wenzhou Medical University in China. We were hosted by Dr. Zibing Jin, a very accomplished vision scientist. We visited the University campus, and the eye hospital. Logan and Fai presented their work and interacted with the local students. Fai was also invited to be the external examiner of six master students and attended their oral defence. We also visit Yandang Mountains, a famous national geological park in China.

Wenzhou Medical University has a very pretty main campus in Chashan, with nice open space for the students.

Main campus of Wenzhou Medical University in Chashan

They have a whole building of 14 floors dedicated for different aspects of eye research!

Dr. Zibing Jin explaining the research programs in the Eye Hospital at Wenzhou Medical University.

Dr. Zibing Jin’s research group is accomplishing very well in recent years. They study genetics, stem cells, and animal models including zebrafish! In 2017 spring, they published three articles in the Proceedings of the National Academy of Sciences, one of the most influential journals in the world.

Dr Zibing Jin sharing his group’s research achievements to Logan and Fai

The Leung lab has been working with Dr. Jin’s group for years. During this trip, Fai outlined his research vision; whereas Logan presented his recent findings to the students.

Fai outlined his research vision to the students at Wenzhou Medical University.

Logan presented his latest findings to the students at Wenzhou Medical University.

Dr. Jin invited Fai to be an external examiner of six master students, whom had their oral defence during our visit. All these students had an extremely positive attitude and were very prolific! They all publish their work in international journals as first author, and contributed to many other lab projects as co-author.

Fai as external examiner of six master students’ oral defence at Wenzhou Medical University.

(Front row) Fai and four other external examiners. (Back row) Dr. Jin and six of his master students.

Enjoying local cuisine with colleagues.

Fai and Logan also visited Yandang Mountains, a famous national geological park in China, with several colleagues.

Logan, Fai and colleagues at Yandang mountains.

Logan and Fai at Yandang mountains. The  Chinese characters on the monument are literally “Yandang mountains”.

In May 2017, the Leung lab visited several collaborating groups in Asia and shared with them our research vision on using zebrafish to find new drugs for retinal degeneration. In this blog post, we will share some pictures of our visit to the Department of Ophthalmology and Visual Sciences (DOVS) at the Chinese University of Hong Kong in the next paragraph. We will also share some pictures of our attendance of the International Conference of Vision & Eye Research at the end of this post.

In DOVS, Dr. Wai Kit Chu from this department and Fai organized a “CUHK Ophthalmic Research Centre Joint Symposium” and invited local experts in ophthalmology and neuroscience to share our latest research findings with each other. Fai outlined our lab’s research program on discover new drugs for retinal degeneration by zebrafish research. Logan presented a talk entitled “Visual Motor Response of a Transgenic Retinitis Pigmentosa Zebrafish Model”.

The CUHK Ophthalmic Research Centre Joint Symposium.
From left to right, 1st row: Mr Jeremiah Palmerston, Dr Wai Kit Chu, Dr Yuk Fai Leung and Mr Logan Ganzen.
From left to right, 2nd row: Dr Rosa Chan, Dr Geoffrey Lau, Dr Wenjun Xiong and Dr Amy Lo.

Fai outlined our lab’s research program on discover new drugs for retinal degeneration by zebrafish research.

Logan presented a talk entitled “Visual Motor Response of a Transgenic Retinitis Pigmentosa Zebrafish Model”.

Dr. Amy Lo from the Department of Ophthalmology at the University of Hong Kong.

Dr. Geoffrey Lau from the Department of Biomedical Sciences at the City University of Hong Kong.

Dr. Wai Kit Chu from the Department of Ophthalmology and Visual Sciences at the Chinese University of Hong Kong.

Dr. Wenjun Xiong from the Department of Biomedical Sciences at the City University of Hong Kong

Dr. Rosa Chan from the Department of Electronic Engineering at the City University of Hong Kong.

Jeremiah Palmerston from Dr. Rosa Chan’s group.

Fai and Logan also attended the International Conference of Vision & Eye Research (iCOVER) when they were in Hong Kong.

Fai and Logan with Dr. Chi Wai Do from the School of Optometry at the Hong Kong Polytechnic University and Dr. Amy Lo from the Department of Ophthalmology at the University of Hong Kong during the dinner ceremony of iCOVER.

Logan and Fai with Dr. Henry Chan from the School of Optometry at the Hong Kong Polytechnic University during the coffee break of iCOVER.

 

Development

  1. Kobayashi T, Zhang H, Tang WWC, Irie N, Withey S, Klisch D, Sybirna A, Dietmann S, Contreras DA, Webb R, Allegrucci C, Alberio R, Surani MA. Principles of early human development and germ cell program from conserved model systems. Nature. 2017 Jun 7. doi: 10.1038/nature22812. [Epub ahead of print] PubMed PMID: 28607482.
  2. Peter IS, Davidson EH. Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5862-5869. doi: 10.1073/pnas.1610616114. PubMed PMID: 28584110.

Regeneration

  1. Laha B, Stafford BK, Huberman AD. Regenerating optic pathways from the eye to the brain. Science. 2017 Jun 9;356(6342):1031-1034. doi: 10.1126/science.aal5060. Review. PubMed PMID: 28596336.

Genomics

  1. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D. Improved maize reference genome with single-molecule technologies. Nature. 2017 Jun 12. doi: 10.1038/nature22971. [Epub ahead of print] PubMed PMID: 28605751.

Stem cells

  1. Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, Bala S, Bensaddek D, Casale FP, Culley OJ, Danecek P, Faulconbridge A, Harrison PW, Kathuria A, McCarthy D, McCarthy SA, Meleckyte R, Memari Y, Moens N, Soares F, Mann A, Streeter I, Agu CA, Alderton A, Nelson R, Harper S, Patel M, White A, Patel SR, Clarke L, Halai R, Kirton CM, Kolb-Kokocinski A, Beales P, Birney E, Danovi D, Lamond AI, Ouwehand WH, Vallier L, Watt FM, Durbin R, Stegle O, Gaffney DJ. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017 May 10. doi: 10.1038/nature22403. [Epub ahead of print] PubMed PMID: 28489815.

Genome Editing

  1. Dong, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature. 2017 Apr 27. doi: 10.1038/nature22377. [Epub ahead of print] PubMed PMID: 28448066.

Molecular Biology

  1. Pennisi E. Circular DNA throws biologists for a loop. Science. 2017 Jun 9;356(6342):996. doi: 10.1126/science.356.6342.996. PubMed PMID: 28596318.
  2. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA Modifications in Gene Expression Regulation. Cell. 2017 Jun 15;169(7):1187-1200. doi: 10.1016/j.cell.2017.05.045. Review. PubMed PMID: 28622506.

Funding

  1. Kaiser J. Data Check: Critics challenge NIH finding that bigger labs aren’t necessarily better. Science. 2017 Jun 9;356(6342):997. doi: 10.1126/science.356.6342.997. PubMed PMID: 28596319.

Genetics

  1. Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell. 2017 Jun 15;169(7):1177-1186. doi: 10.1016/j.cell.2017.05.038. Review. PubMed PMID: 28622505.
  2. Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6406-6411. doi: 10.1073/pnas.1617743114. Epub 2017 May 8. PubMed PMID: 28484005.
  3. Bussey KJ, Cisneros LH, Lineweaver CH, Davies PCW. Ancestral gene regulatory networks drive cancer. Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6160-6162. doi: 10.1073/pnas.1706990114. Epub 2017 Jun 5. PubMed PMID: 28584134.

Evolution

  1. Cindrova-Davies T, Jauniaux E, Elliot MG, Gong S, Burton GJ, Charnock-Jones DS. RNA-seq reveals conservation of function among the yolk sacs of human, mouse, and chicken. Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):E4753-E4761. doi: 10.1073/pnas.1702560114. Epub 2017 May 30. PubMed PMID: 28559354.

 

In May 2017, the Leung lab visited several collaborating groups in Asia and shared with them our research vision on using zebrafish to find new drugs for retinal degeneration. In this blog post, we will share some pictures of our visit to the Department of Ophthalmology at the Osaka University School of Medicine. We met our long-term collaborator Dr. Motokazu Tsujikawa. He is a co-mentor of Logan Ganzen, a graduate student in our laboratory. Logan is a recipient of the predoctoral award from the Indiana Clinical and Translational Sciences Institute. During our Osaka trip, he presented a talk entitled “Visual Motor Response of a Transgenic Retinitis Pigmentosa Zebrafish Model” to Dr. Tsujikawa.

 

Logan in front of a new Center for Medical Innovation and Translational Research.

Fai and Dr. Motokazu in his zebrafish facility in the Center of Medical Innovation and Translational Research.

The Center is beautifully designed with lots of open space.

Logan presented his latest findings to Dr. Motokazu, who served as a co-mentor in Logan’s CTSI predoctoral fellowship.

We also visited the daily operation of the ophthalmology clinic and Osaka University Hospital, and participated in the grand rounds of the local ophthalmologists. We experienced firsthand the passion of translational research from our Japanese colleagues.

Entrance hall of the medical building

A panoramic view at the top floor of the hospital.

We joined the grand rounds of the local ophthalmologists. Dr. Kohji Nishida welcomed the group and gave an opening speech.  Even though we did not speak Japanese, we witnessed their passion to improve clinical service through research.

Needless to say, we were also well-fed by Dr. Tsujikawa with the finest Japanese food, and took some time to visit Kyoto, a magnificent ancient city.

Dr. Motokazu fed us with delicious Japanese food!

A torii path at the Fushimi Inari Taisha in Kyoto.

Kinkaku-ji in Kyoto

Stem cells

  1. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N Engl J Med. 2017 Mar 16;376(11):1038-1046. doi: 10.1056/NEJMoa1608368. PubMed PMID: 28296613.
  2. Merkle FT, Ghosh S, Kamitaki N, Mitchell J, Avior Y, Mello C, Kashin S, Mekhoubad S, Ilic D, Charlton M, Saphier G, Handsaker RE, Genovese G, Bar S, Benvenisty N, McCarroll SA, Eggan K. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature. 2017 May 11;545(7653):229-233. doi: 10.1038/nature22312. Epub 2017 Apr 26. PubMed PMID: 28445466; PubMed Central PMCID: PMC5427175.

Genome-editing

  1. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijannati Y, Sun X, Dong L, Li T, Swaroop A, Wu Z. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun. 2017 Mar 14;8:14716. doi: 10.1038/ncomms14716. PubMed PMID: 28291770.
  2. Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods. 2017 May 30;14(6):547-548. doi: 10.1038/nmeth.4293. PubMed PMID: 28557981.

Scientific Career

  1. Barnett A. Comment: Research needs more competence, less ‘excellence’. Nature. 2017 Mar 22;543(7646):S29. doi: 10.1038/543S29a. PubMed PMID: 28328912.

Development

  1. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T, Coughlin SR, Krummel MF, Leavitt AD, Passegué E, Looney MR. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature. 2017 Apr 6;544(7648):105-109. doi: 10.1038/nature21706. Epub 2017 Mar 22. PubMed PMID: 28329764.

Genomics

  1. Stevens TJ, Lando D, Basu S, Atkinson LP, Cao Y, Lee SF, Leeb M, Wohlfahrt KJ, Boucher W, O’Shaughnessy-Kirwan A, Cramard J, Faure AJ, Ralser M, Blanco E, Morey L, Sansó M, Palayret MG, Lehner B, Di Croce L, Wutz A, Hendrich B, Klenerman D, Laue ED. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature. 2017 Apr 6;544(7648):59-64. doi: 10.1038/nature21429. Epub 2017 Mar 13. PubMed PMID: 28289288; PubMed Central PMCID: PMC5385134.

Eye diseases, glaucoma

  1. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW. Vitamin B(3) modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017 Feb 17;355(6326):756-760. doi: 10.1126/science.aal0092. PubMed PMID: 28209901; PubMed Central PMCID: PMC5408298.
    • Crowston J, Trounce I. Relief for retinal neurons under pressure. Science. 2017 Feb 17;355(6326):688-689. doi: 10.1126/science.aam7935. PubMed PMID: 28209856.

Retina

  1. Wang J, O’Sullivan ML, Mukherjee D, Puñal VM, Farsiu S, Kay JN. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol. 2017 Jun 1;525(8):1759-1777. doi: 10.1002/cne.24153. Epub 2017 Mar 7. PubMed PMID: 27997986.
  2. Xiang L, Chen XJ, Wu KC, Zhang CJ, Zhou GH, Lv JN, Sun LF, Cheng FF, Cai XB, Jin ZB. miR-183/96 plays a pivotal regulatory role in mouse photoreceptor maturation and maintenance. Proc Natl Acad Sci U S A. 2017 May 30. pii: 201618757. doi: 10.1073/pnas.1618757114. [Epub ahead of print] PubMed PMID: 28559309.
  3. Fan J, Jia L, Li Y, Ebrahim S, May-Simera H, Wood A, Morell RJ, Liu P, Lei J,  Kachar B, Belluscio L, Qian H, Li T, Li W, Wistow G, Dong L. Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse. Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4271-E4280. doi: 10.1073/pnas.1619442114. Epub 2017 May 8. PubMed PMID: 28484004; PubMed Central PMCID: PMC5448201.

Genetics

  1. Yang J, Jin ZB, Chen J, Huang XF, Li XM, Liang YB, Mao JY, Chen X, Zheng Z, Bakshi A, Zheng DD, Zheng MQ, Wray NR, Visscher PM, Lu F, Qu J. Genetic signatures of high-altitude adaptation in Tibetans. Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4189-4194. doi: 10.1073/pnas.1617042114. Epub 2017 Apr 3. PubMed PMID: 28373541; PubMed Central PMCID: PMC5402460.
  2. Jin ZB, Wu J, Huang XF, Feng CY, Cai XB, Mao JY, Xiang L, Wu KC, Xiao X, Kloss BA, Li Z, Liu Z, Huang S, Shen M, Cheng FF, Cheng XW, Zheng ZL, Chen X, Zhuang W, Zhang Q, Young TL, Xie T, Lu F, Qu J. Trio-based exome sequencing arrests de novo mutations in early-onset high myopia. Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4219-4224. doi: 10.1073/pnas.1615970114. Epub 2017 Apr 3. PubMed PMID: 28373534; PubMed Central PMCID: PMC5402409.

 

Our research on zebrafish vision has been featured by Inés Laura Dawson from Draw Curiosity in her educational science video entitled “Is Animal Vision 20/20?”.

Neuroscience

  1. Dresler M, Shirer WR, Konrad BN, Müller NC, Wagner IC, Fernández G, Czisch M, Greicius MD. Mnemonic Training Reshapes Brain Networks to Support Superior Memory. Neuron. 2017 Mar 8;93(5):1227-1235.e6. doi: 10.1016/j.neuron.2017.02.003. PubMed PMID: 28279356.
  2. Burton CE, Zhou Y, Bai Q, Burton EA. Spectral properties of the zebrafish visual motor response. Neurosci Lett. 2017 Mar 3. pii: S0304-3940(17)30204-5. doi: 10.1016/j.neulet.2017.03.002. [Epub ahead of print] PubMed PMID: 28267562.

Genome editing

  1. Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, Lei M, Zhao F, Wang W, Li X, Liu J. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics. 2017 Mar 1. doi: 10.1007/s00438-017-1299-z. [Epub ahead of print] PubMed PMID: 28251317.
  2. Hohmann S. Editor’s comment on “CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein”. Mol Genet Genomics. 2017 Mar 1. doi: 10.1007/s00438-017-1300-x. [Epub ahead of print] PubMed PMID: 28251316.

ELSI

  1. Williams WM, Ceci SJ. National hiring experiments reveal 2:1 faculty preference for women on STEM tenure track. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5360-5. doi: 10.1073/pnas.1418878112. PubMed PMID: 25870272; PubMed Central PMCID: PMC4418903.

Genome editing

  1. Park RJ, Wang T, Koundakjian D, Hultquist JF, Lamothe-Molina P, Monel B, Schumann K, Yu H, Krupzcak KM, Garcia-Beltran W, Piechocka-Trocha A, Krogan NJ, Marson A, Sabatini DM, Lander ES, Hacohen N, Walker BD. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet. 2017 Feb;49(2):193-203. doi: 10.1038/ng.3741. PubMed PMID: 27992415.
    • Commentary: Tsui CK, Gupta A, Bassik MC. Finding host targets for HIV therapy. Nat Genet. 2017 Jan 31;49(2):175-176. doi: 10.1038/ng.3777. PubMed PMID: 28138150.
  2. Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017 Feb 14;8:14454. doi: 10.1038/ncomms14454. PubMed PMID: 28195574.

Disease

  1. Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med. 2015 Mar 11;7(278):278ra33. doi: 10.1126/scitranslmed.aaa2512. PubMed PMID: 25761889.