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Abstract The channel activity of colicin E1 was studied in
planar lipid bilayers and liposomes. Colicin E1 pore-forming
activity was found to depend on the curvature of the lipid bilayer,
as judged by the effect on channel activity of curvature-
modulating agents. In particular, the colicin-induced trans-
membrane current was augmented by lysophosphatidylcholine
and reduced by oleic acid, agents promoting positive and negative
membrane curvature, respectively. The data obtained imply
direct involvement of lipids in the formation of colicin E1-
induced pore walls. It is inferred that the toroidal pore model
previously validated for small antimicrobial peptides is applica-
ble to colicin E1, a large protein that contains ten a-helices in its
pore-forming domain.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Colicin E1 belongs to a group of water-soluble ‘‘membrane-

active’’ proteins that can interact with lipid membranes

through conformational changes [1–3]. These interactions re-

sult in the formation of ion-conducting pores in lipid bilayers

[4–6]. It has been shown that pore formation by the closely

related colicins Ia and A is accompanied by translocation of a

substantial part of the colicin polypeptide across the mem-

brane [7–11]. Moreover, hydrophilic proteins inserted in the

translocated segment of the pore-forming colicin are them-
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selves translocated and are functional on the opposite side of

the bilayer [12]. However, the structure of the pore and the

mechanism of translocation remain obscure.

Progress in the research of the action of antimicrobial pep-

tides on membranes has led to the formulation of the model of

a toroidal lipid pore [13], involving direct participation of

lipids in the formation of the pore [14–25]. An essential feature

of this model is that a wall of the pore consists not only of

peptides but also of lipid headgroups, which line the pore from

one side of the membrane surface to the other, thereby forming

a structure of high positive curvature.

The toroidal pore mechanism has been considered for a se-

ries of small antimicrobial peptides, e.g., magainin [16], mel-

ittin [23], pleurocidin [26], the phytotoxic lipopeptide

syringomycin E [27], the human cathelicidin antimicrobial

peptide LL-37 [28], and the hagfish cathelicidin antimicrobial

peptide [29]. The major evidence in favor of toroidal pore

formation by the peptides derives from the sensitivity of their

pore-forming activity to the curvature of the target lipid bi-

layer membranes. Lipids with positive spontaneous curvature

(SC) stimulate, while lipids having negative SC inhibit the

formation of pores by magainin and syringomycin [16,27]. The

value of the SC, determined by the ratio of the cross-sectional

areas of headgroup to acyl chain moieties [30,31], characterizes

the ability of lipids to form non-bilayer structures.

The formation of a structure closely related to a toroidal

pore, with highly bent transient lipidic connections between

fusing membranes (the so-called fusion stalks) is implicated in

the process of membrane fusion [32–35]. In particular, it has

been shown that the agents having an ability to modify the SC

of a planar lipid bilayer, lysophosphatidylcholine and oleic

acid (OA), inducers of positive and negative SC, respectively,

inhibit and stimulate the fusion of cells with a target planar

membrane [33]. The electrical breakdown of planar bilayer li-

pid membrane (BLM) is also thought to occur through ex-

pansion of positively curved toroidal-type lipidic pores [36].

The toroidal pore concept has also been proposed to be

involved in the mechanism of action of large toxins belonging

to a group of actinoporins, e.g., equinatoxin II [37] and sti-

cholysins [38,39], although the influence of membrane curva-

ture has shown to be opposite for sticholysin [38] compared to

magainin [16]. The authors suggest that the presence of a mi-

nor amount of cardiolipin, a strong inducer of negative SC,
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augments the efficiency of toxin pore formation because of the

presence of a negative curvature region in the plane of the

membrane around the toroidal pore. Recently, evidence has

been reported pointing to the formation of toroidal-shaped

pores by the pro-apoptotic proteins Bax [40,41] and tBid [42],

though the data on the relationship between the bilayer SC and

the membrane-permeabilizing potency of these proteins are

rather diverse [41–44].

In the present study, we used agents that modulate the

membrane SC in order to test their effect on colicin E1 channel

function. It was shown that lysophosphatidylcholine promoted

the colicin channel activity, whereas OA reduced it. In addi-

tion, experiments with membranes of different lipid composi-

tions revealed a correlation between the membrane

permeabilizing potency of colicin and the bending propensity

of a bilayer. Thus, the data obtained here point to the rele-

vance of the toroidal pore mechanism to the process of colicin

E1 channel formation.
Fig. 1. Effect of 10 lM M-LPC (panel A) or 10 lM OA (panel B) on
the colicin E1-induced current across a planar lipid bilayer. The
membrane was formed from a squalene solution of DPhPC/DPhPG
(70/30%). The buffer solution was 10 mM b-alanine and 120 mM KCl,
pH 4.0. Initial voltage was 60 mV. Inset to panel B. Dependence of the
colicin E1-induced current across a planar lipid bilayer on OA con-
centration. The concentration of OA was 10 lM (curve 2) and 30 lM
(curve 3). Curve 1, control in the presence of methyl-b-cyclodextrin at
the same concentration (30 lM) as in curve 3. The membrane was
formed from a squalene solution of DPhPC/DPhPG (70/30%). Initial
voltage, 60 mV. Current is plotted relative to initial conditions.
2. Materials and methods

The 178-residue C-terminal colicin E1 channel polypeptide, P178,
was prepared by thermolysin proteolysis of intact colicin E1 [45].
Planar BLMs were formed from a 2% solution of di-

phytanoylphosphatidylcholine/diphytanoylphosphatidylglycerol (DPh-
PC/DPhPG) (70/30 mol%) in squalene by the brush technique [46] on a
0.55-mm diameter hole in a Teflon partition separating two compart-
ments of a cell containing aqueous solutions of 120 mM KCl and 10
mM b-alanine, pH 4.0. The electrical current (I) was measured with an
amplifier (U5-11, Moscow, Russia), digitized by a LabPC 1200 (Na-
tional Instruments, Austin, TX) and analyzed using a personal com-
puter with the help of WinWCP Strathclyde Electrophysiology
Software designed by J. Dempster (University of Strathclyde, UK). A
voltage of 60 mV (unless otherwise stated) was applied to BLM with
Ag–AgCl electrodes placed directly into the cell. In single-channel
experiments, a patch-clamp amplifier (model BC-525C, Warner In-
struments, Hamden, CT) was used for current measurements. C-ter-
minal colicin peptide, P178 [45], was added to the cis-side of the
membrane, and myristoyl-lysophosphatidylcholine (M-LPC) and wa-
ter-soluble OA (a complex of OA and methyl-b-cyclodextrin, Sigma)
were added to both sides of the BLM.
Dye-loaded liposomes were prepared by evaporation under a stream

of nitrogen of a 2% solution of a mixture of lipids (Avanti Polar
Lipids, AL) in chloroform followed by hydration with a buffer solution
containing 250 mM Tris and 100 mM carboxyfluorescein (CF). The
mixture was vortexed, passed through a cycle of freezing and thawing,
and extruded through 0.1-lm pore size Nucleopore polycarbonate
membranes using an Avanti Mini-Extruder. The unbound CF was
then removed by passage through a Sephadex G-50 coarse column
with a buffer solution containing 10 mM b-alanine and 0.12 M KCl,
pH 4.0.
Binding of P178 to membranes was monitored using liposomes

containing brominated lipids known to quench tryptophan fluores-
cence [2,47,48]. Liposomes with high 9,10-dibromo-palmi-
toylphosphatidylcholine (9,10-BrPC) content were made from a 2 %
solution of 9,10-BrPC/DPhPG (70/30 mol%) in chloroform. The buffer
solution used for preparation of the brominated liposomes contained
10 mM b-alanine and 0.12 M KCl, pH 4.0. The same buffer was used in
experiments on tryptophan fluorescence quenching by the brominated
liposomes.
The CF leakage of liposomes was measured with a Hitachi F-4000

(Tokyo, Japan) fluorimeter with peak excitation and emission wave-
lengths of 490 and 520 nm (band-pass of both beams, 5 nm).
The extent of the CF leakage (a) was calculated as follows:
a ð%Þ ¼ 100 � ðFf � F0Þ=ðF100 � F0Þ, where F0 and Ff represent the ini-
tial and the final (steady-state) levels of fluorescence before and after
the protein addition, respectively, and F100 is the fluorescence value
after complete disruption of liposomes by addition of the detergent,
LDAO (lauryldimethylamine-N-oxide, final concentration, 2.4% w/w).
The b-alanine buffer (10 mM b-alanine and 0.12 M KCl, pH 4.0) was
used for the fluorescence studies.
Colicin (P178) was added from a stock water solution to the buffer

solution in the spectrophotometric cuvette. M-LPC and OA were ad-
ded to the buffer solution containing dye-loaded (measurements of CF
leakage) or brominated (measurements of tryptophan fluorescence
quenching) liposomes in the cuvette. Tryptophan fluorescence excited
at 280 nm was measured at 327 nm (band-pass of both beams, 5 nm).
All experiments were performed at room temperature.
3. Results

3.1. Colicin E1 currents across planar lipid bilayers

The effects of M-LPC and OA on the macroscopic current

across BLM mediated by the channel-forming domain of co-

licin E1 (P178) are demonstrated in Fig. 1, panels A and B,

respectively. It is seen that M-LPC induced the increase in the

colicin E1-mediated current, while OA had the opposite effect.
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Importantly, colicin E1 current retained the voltage-depen-

dence after the addition of both M-LPC and OA (voltage

changes are marked by arrows). It should be noted that the

decrease in the current induced by OA was often preceded by a

transient activation (Fig. 1B). OA was added to the bathing

solution in the form of a complex with cyclodextrin called

‘‘water-soluble OA’’ (complex of OA and methyl-b-cyclo-
dextrin) to provide better delivery and insertion into the

membrane of OA. The control experiments showed that cy-

clodextrin itself did not increase the conductivity of the

membrane and produced no effect on the colicin-induced

current (Fig. 1B, inset, curve 1). The inset to Fig. 1B illustrates

the time courses of the current suppression by increased con-

centrations of OA (curves 2 and 3). The effective concentra-

tions (3–30 lM) were close to those stimulating membrane

fusion mediated by influenza hemagglutinin (1–10 lM) [33].

Single channels of P178 recorded in DPhPC bilayers at 1 M

KCl exhibit the voltage dependence similar to that character-

istic of the macroscopic current [49]. Fig. 2 illustrates typical

recordings of colicin E1 channels in the control (A) and in the
Fig. 2. Single-channel traces of colicin E1 (panel A), in the presence of
20 lMM-LPC (panel B) and 30 lMOA (panel C). The membrane was
formed from a decane solution of DPhPC. The buffer solution was 10
mM b-alanine and 1 MKCl, pH 4.0. The voltage of 80 mV was applied
to BLM.
presence of M-LPC (B) and oleic acid (C). The single-channel

analysis (not shown) revealed that the channel amplitudes re-

mained unaltered after the addition of M-LPC or OA, whereas

the number of open channels differed considerably in the

presence of these agents, increased and decreased, respectively,

in the presence of M-LPC and OA.

3.2. CF leakage from liposomes

The dimensions of pores formed in BLM by antimicrobial

peptides and toxins are so large that they allow the passage of

bulky molecules as CF and calcein [15,16,29,37,38,50–54]. In

this work, colicin E1-induced leakage of CF was measured

from liposomes with different membrane curvatures. The ex-

tent of the CF leakage constituted about 17% and depended

slightly on the concentration of P178 within a range 5–40 nM.

In contrast, the rate of the CF leakage, as judged by the half-

time (t1=2) of the time course, rose markedly as the P178 con-

centration was increased from 10 nM (t1=2 ¼ 180 s) to 40 nM

(t1=2 ¼ 10 s), in agreement with earlier data obtained with the

intact colicin E1 protein [55].

Dye-release experiments showed that the rate of the colicin-

induced CF leakage substantially increased in the presence of

M-LPC (Fig. 3), which is consistent with the effect of this SC-

modulating agent on the colicin-induced macroscopic current

(Fig. 1). The half-time for the CF leakage decreased markedly

over a concentration range of 1–10 lM M-LPC at a P178

concentration of 10 nM (Fig. 3, inset). The effective concen-

trations were close to those stimulating membrane fusion

mediated by influenza hemagglutinin (3–30 lM) [33].

To further test the influence of membrane SC on the colicin

channel-forming activity, experiments were performed with

liposomes, formed from lipids with different SC. Fig. 4A shows

the time courses of the colicin-induced CF leakage of lipo-

somes containing oleoyl-lysophosphatidylcholine (O-LPC)

or dioleoylphosphatidylethanolamine (DOPE) as compared

to that of the control liposomes formed from dioleoyl-

phosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/
Fig. 3. The effect of M-LPC on the CF leakage (a denotes the extent of
the CF leakage). The concentration of the DPhPC/DPhPG (70/30%)
liposomes was 10 lM. The concentration of P178 was 5 nM. Curve 1,
control; curves 2–4, M-LPC added at concentrations of 2, 4 and 12
lM, respectively. Inset: Dependence of t1=2 of CF leakage on the
concentration of M-LPC (P178 concentration here was 10 nM).



Fig. 4. CF leakage from liposomes with different lipid compositions.
The concentration of P178 was 10 nM, other conditions as in Fig. 2.
(A) O-LPC/DOPC/DOPG (2:5:3), curve 1; DOPC/DOPG (7:3), curve
2; DOPE/DOPG (7:3), curve 3. (B) DPhPC/DPhPG (7:3), curve 1;
DPhPC/DPhPS (7:3), curve 2.

Fig. 5. Binding of colicin E1 to liposomes. Time course of the tryp-
tophan fluorescence quenching by BrPC-containing liposomes. Con-
centrations of P178, 100 nM, and brominated liposomes, 150 lM.
Inset: The extent of quenching of the P178 fluorescence by the
brominated liposomes without additions, in the presence of 15 lM
M-LPC and 20 lM OA, respectively.
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DOPG) (70%/30%, w/w). It is known that lysophosphatidyl-

choline having a relatively large polar head group and only one

acyl chain is characterized by a high value of positive SC

[56,57], while DOPE with a small polar head group and two

acyl chains has a high negative SC [57,58]. It is seen that the

colicin-induced CF leakage was accelerated in the presence of

O-LPC (Fig. 4A, curve 1) and decelerated in the presence of

DOPE (Fig. 4A, curve 3) relative to the control (Fig. 4A, curve

2). It should be mentioned that apart from the slow phase, the

time course of the colicin-induced CF leakage of DOPE/

DOPG liposomes contained a fast response that could not be

resolved (Fig. 4A, curve 3). Consistent with the difference in

the headgroup surface areas of hydrated phosphatidylglycerol

and phosphatidylserine [59], Fig. 4B shows that liposomes

formed from DPhPC/diphytanoylphosphatidylserine (DPhPS)

(7:3) exhibited a slower colicin-induced CF leakage than those

formed from DPhPC/DPhPG (7:3). We note that the surface

areas were compared at higher pH than was used in the present

study and have assumed that the difference also applies to the

conditions used here. From the comparison of Fig. 4B, curve 1

with Fig. 4A, curve 2, it is evident that the permeabilizing

potency of colicin E1 is reduced in DPhPC/DPhPG compared

to DOPC/DOPG liposomes, in accord with the fact that the

cross-sectional area of the diphytanoyl tail is larger than that

of the dioleoyl tail [60,61]. This conclusion is supported by

corresponding measurements of the colicin E1-mediated cur-

rent with DPhPC/DPhPG and DOPC/DOPG membranes

(data not shown). In addition, experiments were carried out

with cardiolipin, which has more massive fatty acid body.

Cardiolipin did not affect the rate of CF release (not shown),

although it is known to induce negative SC. The reason might
be that the size of cardiolipin is too large to incorporate in the

toroidal pore.

3.3. Colicin E1 binding to liposomes

It is known that the binding of colicin to membranes is

governed by electrostatics [62] and thus should not be sensitive

to membrane SC. We probed the effect of SC-modulating

agents on the colicin-membrane binding in experiments that

utilized tryptophan fluorescence quenching by brominated

phospholipids. Fig. 5 shows a typical time course of the P178

fluorescence after the addition of liposomes containing 9,10-

BrPC. From the comparison of the corresponding traces of the

fluorescence recorded in the presence of the SC-modulating

agents, it can be concluded that neither M-LPC nor oleic acid

affected the binding of P178 to the lipid bilayer (Fig. 5, inset).

The quenching of colicin tryptophan fluorescence by bromi-

nated phospholipids proceeded much faster than the colicin-

induced CF release from liposomes (compare with Fig. 3).

Upon addition of liposomes to the protein solution, associa-

tion of the channel-forming domain of colicin E1 with the

vesicles is, without stopped-flow-type measurements, appar-

ently instantaneous and thus too fast to be detected by our

present experimental system.
4. Discussion

The results of this study have demonstrated the correlation

between the colicin channel-forming activity and membrane

curvature, thereby supporting the hypothesis that channel

formation by colicin E1 occurs via a mechanism involving

toroidal lipidic pore. This mechanism implies direct involve-

ment of lipid headgroups in the formation of the channel wall.

It can be proposed that, in contrast to antimicrobial peptides,

the formation of the colicin E1 channel does not require

oligomerization of the protein, since it has 8 hydrophilic-am-

phypathic and 2 hydrophobic a-helices in its bound state

which should be sufficient for the formation of a toroidal pore.



Fig. 6. A scheme of formation of toroidal pore in lipid bilayer induced
by colicin E1. (A) Closed state of pore after colicin binding to mem-
brane or after pore closing in the presence of a trans-positive potential.
(B) Toroidal configuration of the open pore state. Colicin a-helices I–
VII and X are shown in blue, a hairpin of VIII–IX-helices is shown in
brown. Headgroups of neutral lipids are shown in yellow, while those
of anionic lipids are shown in red. Because the anionic lipid involved in
the toroidal channel structure is proposed to be paired with basic
residues in the trans-membrane segments of colicin, it would not
contribute to a net negative charge that would cause a preference of the
channel for cations.
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In the case of the peptide magainin, the toroidal pore consists

of 4–7 a-helices, as estimated from neutron-scattering data

[14]. Fig. 6 illustrates a scheme of the toroidal pore formed by

colicin E1. The walls of the pore are made not only of colicin

a-helices (two hydrophobic and four additional helices), but

also of phospholipid molecules intercalated between them.

These lipid molecules experience elastic strain if placed in

highly curved structures. Hence, pore formation should be

facilitated by including lipids with high positive values of SC,

e.g., lysophospholipids.

It is noteworthy that the data on the stimulation of the co-

licin E1 channel-forming activity by lysophosphatidylcholine,

the agent inducing positive SC, apparently explain the stimu-

lating effect of N-bromosuccinimide (NBS) treatment of BLM

on the colicin E1-mediated current observed in [49]. The in-

teraction of NBS with unsaturated phospholipids leads to the

formation of bromohydrins [63] that are suggested to undergo

subsequent hydrolysis of an ester bond, thus producing lyso-

phospholipids similarly to chlorohydrins [64].
According to the toroidal pore structure, the phospholipids

in such a pore would exhibit negative curvature in a dimension

parallel to the bilayer plane but positive curvature along the

bilayer normal [17]. Thus, the toroidal pore formation could be

stimulated by lipids characterized by negative SC, as it was

observed with sticholysin [38]. This may explain the transient

stimulation of colicin-induced current after the addition of OA

(Fig. 1).

As mentioned in Section 1, alteration of membrane curvature

results in different functional consequences, e.g., modulation of

membrane fusion [33], and regulation of the activity of me-

chanosensitive channels [65,66], sensing of membrane-bending

events by a conserved protein BAR domain that is crucial for

processes of membrane remodeling in growing cells [67], regu-

lation of the assembly/disassembly cycle of the COPI coat on

Golgi membranes [68]. A number of studies have shown that the

agents modifying membrane SC can change the characteristics

of peptidic ion channels. In particular, the addition of lyso-

phospholipids inducing positive membrane curvature causes an

increase in both the number and the lifetime of open gramicidin

channels [69]. Recently, Bruno et al. [70] have demonstrated

that the addition of OA, known to produce the opposite effect

on membrane curvature, also provokes an increase in gramici-

din channel lifetime. Based on these results, the authors came to

the conclusion that the mechanical properties of the bilayer, not

simply curvature, determine the gramicidin channel character-

istics that are associated with hydrophobic mismatch between

the channel length and the bilayer thickness [71].

Keller et al. [72] and Bezrukov et al. [73] observed a corre-

lation between membrane SC and the relative probabilities of

different conductance states of alamethicin channels. In par-

ticular, states of higher conductance were more probable in

DOPE, a lipid with high negative curvature, than in DOPC, a

lipid with low curvature. These results were explained in terms

of the ‘‘barrel-stave’’ model by linking a degree of peptide

oligomerization to a membrane-induced line tension [72,74].

According to our measurements, the dependence of colicin E1

single-channel activity on the membrane SC differed substan-

tially from that of alamethicin channels. Modulation of SC led

to alteration of the total number of open channels, but did not

change the distribution of probabilities of low- and high-con-

ductance states.

The dependence of ion selectivity of colicin channels on the

presence of negatively charged lipids in the bilayer [75] can also

be interpreted in terms of direct participation of lipid molecules

in the colicin pore walls or, alternatively as an effect of mem-

brane surface potential. The idea of involvement of lipid mole-

cules in the colicin pore structure has been proposed byKienker

et al. [11]. Actually, the toroidal pore model discussed here

readily explains the ability of pore-forming colicins to translo-

cate their long segments across a membrane [8], by predicting

that the access to the trans-membrane helices of the pore-

forming colicins will be larger than in a pure protein poremodel.
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