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Do Climate Models Need Soil C-N
Dynamics?

 Latent heat simulation requires stomatal
conductance calculation — depends, in part on
leaf N concentration.

« Carbon stocks in soil show sensitivity to
Inclusion of N dynamics.

* Models that include N dynamic in soil C
decomposition show a tendency for reduced
heterotrophic respiration.



OCN Changes in C stocks (kg C m2) 1860-2100
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CLM-CN

Ceon (kgC m®)

Experiment Wood C° Veg, C CWD C* Litter C SOM C* Total C
Control
CN 613 (53) 653 (57) 147 (13) 16 (1) 134 (29) 1150
C 943 (47) 1014 (50) 247 (12) 28 (1) 736 (36) 2026
C, 712 (49) 771 (53) 167 (11) 19 (1) 496 (34) 1452
Years 19762000
CN+co2 649 (54) 690 (58) 153 (13) 16 (1) 339 (28) 1199
CN+ndep 619 (53) 660 (57) 149 (13) 16 (1) 339 (29) 1163
CN+co2ndep 656 (54) 698 (57) 155 (13) 17 (1) 344 (28) 1213
C+eo2 1047 (48) 1125 (51) 269 (12) 3 (1) 776 (35) 2201
CHea? 803 (50) 870 (54) 184 (11) 27 (1) 537 (33) 1612
Years 20762100
CN+co2 801 (57) 845 (60) 176 (13) 18 (1) 357 (26) 1397
CN+ndep 642 (53) 684 (57) 154 (13) 17 (1) 152 (29) 1206
CN+co2ndep 847 (57) 895 (60) 186 (13) 19 (1) 379 (26) 1480
C+eo2 1527 (52) 1625 (55) 363 (12) 0 (1) 936 (32) 2063

C+eo? 1225 (54) 1309 (57) 263 (12) 1) BE (30) 2284




NACP Regional Synthesis

A) Gross Primary Production B) Heterotrophic Respiration
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Climate Models Need Accurate
Representations of Soil C-N Dynamics

 Soll C decomposition representations have not
principally changed in 30 years.

 While soil models differ in many detalils,

— N dynamics generally follow C dynamics,

— N becomes avalilable as a result of stoichiometry
constraints.

 All climate models, to my knowledge, used at
global scale use first order “donor control”
Kinetics.




Jenny/Olson (1963) Paradigm
dC/dt=1-kC

CENTURY/DAYCENT in OCN, CASA-CNP, CASA-
GFED, LM3V, many others at regional scales

RothC/SUNDIAL In ISAM,
Biome-BGC in CLM-CN

In each model the associated N turnover Is
determined by C dynamics among various C
pools and stoichiometry.



Decomposition Model Structures
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Converging cascade model of litter and soil
organic matter decomposition. The model
includes three litter pools (Lit1, Lit2, and Lit3,
see text) and three soil organic matter pools
(SOM1, SOM2, and SOM3).
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Why Do We Need to Consider a New
Approach?

 Substrate supply models are immensely useful:

— Capture major components of observed soil C spatial
patterns

— Kinetics generally consistent with long-term experimental
finding
* However, there are important phenomena that are not
directly addressed:
— Priming (Wutzler and Reichstein 2007)
— Divergent results from N fertilization experiment
— Mineral soil interactions (Heal et al. in press)

— Complicated temperature responses (Davidson and
Janssens 2006)



Decomposition is an Enzyme Kinetic
Process
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5. Enzyme production (Re),

from Schimel and Weintraub (1993)
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Carbon Equations

After Allison et al. (2010)
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Include Representation of Mineral
Interactions
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Soil Enzymes

Process Enzyme Abbr. | EC Substrate
Degradation | Laccase (phenol oxidase) POX | 1.10.3.2 | L-3,4-
of dihydroxyphenylalanine
Lignin (DOPA)
Peroxidase PER | 1.11.1.7 | DOPA + H,0,
Degradation | p-1,4-glucosidase; BG 3.2.1.21 | 4-methylumbelliferone
of Cellobiase (MUB)-B-D-glucoside;
Cellulose p-nitrophenyl (pNP)-
glucopyranoside
Cellobiohydrolase ; CBH | 3.2.1.91 | 4-MUB-B-D-cellobioside;
Exoglucanase; pNP-B-D-cellobioside
Cellulose 1,4--
cellobiosidase
Endo-glucanase EG 3.2.1.4 | Carboxymethyl cellulose
Cellulase (CMC)
Carboxymethylcellulase
N acquisition | N-acetyl-g-D- NAG | 3.2.1.14 | 4-MUB-N-acetyl-p-D-
glucosaminidase; 3.2.1.52 | glucosaminide;
B-1,4-N- pNP-B-N-
acetylglucosaminidase acetylglucosaminide
72 papers

181 observations
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EG: substrates are CMC (mg mL™1), which is
converted to mM by a molecular weight of

Km
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282.18 g mol-L. [Ichikawa et al., 2005]
CMC molecular formula
[C6H7OZ(OH)X(OCH2COONa)y]n
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Viy (Mmol Enzyme mg~ soil h™') at 20 °C & pH,,
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Optimum Temperature (°C)
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Activation Energy (k] mol)
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Molecular Weight (kDa)
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Example Simulation

Spin-up model (50 years)

o Soil: Alfisols (soc=2s, boc=0.36, MBc=0.65 mg C g2
e T=20°C

e pH=6
External input (x10™# mg C g™t h™) 1
Vinax (Mg C Mg~ ENZ h1) 1.54 39.02

Km (mg C g™) 100 300
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Next Steps

Include N equations
Reality using long-term experimental datasets

Currently parameters are estimated using data
largely from chemostat experiments

Estimation of soil enzyme kinetic equation
parameters

— need to be estimated from a combination of field
and laboratory experiments

— using solls and soil carbon substrates



Ssummary

C-N interaction effects on
decomposition dynamics is currently
Imposed in models.

New microbial enzyme kinetics
approach shows promise of
addressing various observed
phenomena from first principles.

Compromises are required to limit
models to manageable complesity.

New measurement approaches are
needed to estimate suitable model
parameters.

Approach offers an opportunity
utilize the new information
becoming available from microbial
genomics.

Bachoria -




