N deposition effects on forest soil C cycling

Ivan Janssens

Thanks to:

Wouter Dieleman, Sebastiaan Luyssaert & Sara Vicca

Bev Law, Josep Peñuelas, Sune Linder, + several colleagues + everybody who sweats in the field

Take home messages:

1. N deposition often slows down soil C cycling.

2. The main reason is probably a nutrientinduced C-allocation shift not between roots and shoots, between biomass production and the non-biomass components of NPP

Introduction (1)

In '98, Waring et al. suggested that NPP/GPP ratio is constant in forests (0.47).

If so: C allocation to biomass production would be constant

Unfortunately: very large variation in ratio of biomass production / GPP (Litton et al. 2007; DeLucia et al., 2007).

Introduction (2)

• 2007: N deposition is the main determinant of forest NEP (Magnani et al., Nature 2007 and subsequent discussion)

Magnani result was very novel and surprising, but plausibel :

- Stimulation of CO2 sink >> Stimulation of wood production; implying a large soil C sink
- N-rich litter decomposes faster in short term, but N addition reduces decomposition of recalcitrant plant litter (Fog, 1988; Berg B., several papers)

Federico's finding was relevant

We had just compiled a global forest C flux database (Luyssaert et al., 2007)

Could we detect a similar N deposition response in our database ?

Nitrogen-deposition enhances forest carbon sink through reduced respiration as well as increased productivity (Luyssaert et al.)

1. 2007: Submitted to Nature ; sent out for review ; rejected but invited to resubmit a revised version; rejected

2. 2007 bis: Submitted to Science; sent out for review ; rejected but invited to resubmit a revised version; rejected

3. 2008: Submitted to Pnas ; sent out for review ; rejected

Among many nonsensical referee comments, was one interesting:

why would the red curve be shifted downward and not to the right ?

At that stage we gave up and buried the paper

Early 2009, Sune Linder & colleagues organized a workshop on this topic.

Could we look at results from N-addition experiments (meta-analysis)?

Meta-analysis of 57 fertilization experiments on trees/forests

RESULTS : Overall mean effects

How consistent is the decrease in SCE?

How consistent is this decrease of SCE?

P < 0.001

P < 0.01without CO_2

P = 0.01without CO_2 and young trees

How consistent is the response:

always there except in young & CO2-fumigated forests

in young forests : faster canopy closure; LAI increases; GPP increases; excess C allocated to below-ground sinks

In FACE experiments : GPP increases; below-ground C allocation increases

UNDERLYING MECHANISMS? CONCEPTUAL SCHEME

THE EFFECT OF ADDED NITROGEN ON THE RATE OF DECOMPOSITION OF ORGANIC MATTER

By KÅRE FOG

IMPLICATIONS

Mechanism = unknown, but magnitude of reduction = large

If direct inhibition = main mechanism: soil C sink = 100 g

BUT: if all of the reduction is due to shifted allocation and reduced C inputs, soil C sink = 0 !!

Could we detect allocation shifts in our global forest C database ?

YES!

			x 13	Indicators							Extra support				
ID	Nutr. class	soil type	N soil	other nutr.	CEC/exch. bases	N min.	рH	water status	<mark>flo</mark> ra	atm. dep.	hist.	report	expert	certainty level	
1	medium		X			X							x	4	
2	low	x						x				x		3	
3	medium	X								X				3	
4	high		x									X	x	4	
5	high		x									X	x	4	
6	low			X	x									5	

Could the unaccounted allocation to symbionts & exudation really amount to > 20% of GPP ??

 Litton et al. 2007: Total Below Ground Carbon Allocation = 10%-60% of GPP Phillips & Fahey 2007: fertilization reduces rhizosphere microbial activity by 40-50% •Högberg M. et al. 2010: fertilization reduces C allocation to soil biota by 60% Hobbie E. et al. 2006: fertilization reduces root exudation and symbionts by up to 22% of GPP Treseder 2004: P fertilization reduces mycorrhizal abundance by 32%

If 20% more of GPP is transferred to nonbiomass NPP components in low nutrient conditions, soil C cycling would be much higher

Thus, N addition in N (co-)limited systems may evoke a huge reduction in this C-flux

The large reduction in soil respiration under high N deposition is likely due to reduced C exudation & tranfers to symbionts

Take home messages:

1. N deposition slows down soil C cycling. This change is HUGE !!! (hundred(s) of grams C m-2 yr-1)

2. The main reason is a nutrient-induced C-allocation shift between the nonbiomass components of NPP and biomass production (hundreds of grams C m-2 yr-1) Thank you

		Indicators										Extra support		
ID	Nutr. class	soil type	N soil	other nutr.	CEC/exch. bases	N min.	pH	water status	flora	atm. dep.	hist.	report	expert	certainty level
1	medium		x			х							x	4
2	low	x						x				x		3
3	medium	x								x				3
4	high		x									x	x	4
5	high		x									x	x	4
6	low			x	x									5

ID	Original biomass production	Reproductive organ production	Understory production	Litterfall decomposition	Biomass losses to herbivores	Gapfilled biomass production
1	514.0	1.4	21.8	NA	10.2	547.4
2	842.5	35.5	NA	NA	15.3	893.3
3	656.0	36.2	NA	NA	15.5	707.8
4	668.0	34.3	NA	NA	14.9	717.2
5	805.0	38.6	NA	NA	16.3	859.9
6	1,036.4	45.0	76.1	46.6	18.5	1,222.7
7	638.8	24.6	3.3	NA	11.5	678.1
8	1,247.0	53.9	52.8	NA	21.3	1,375.0
9	389.0	10.6	130.0	NA	6.3	535.8

Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems

Björn Berg and Egbert Matzner

Oecologia (2001) 128:94-98 DOI 10.1007/s004420100646

Göran I. Ågren · Ernesto Bosatta · Alison H. Magill

Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition

N deposition is predicted to increase further

Galloway et al., 2004

nature geoscience

FOCUS | REVIEW ARTICLE PUBLISHED ONLINE: 25 APRIL 2010 | DOI: 10.1038/NGE0844

Reduction of forest soil respiration in response to nitrogen deposition

I. A. Janssens¹*, W. Dieleman¹, S. Luyssaert², J-A. Subke³, M. Reichstein⁴, R. Ceulemans¹, P. Ciais², A. J. Dolman⁵, J. Grace⁶, G. Matteucci⁷, D. Papale⁸, S. L. Piao⁹, E-D. Schulze⁴, J. Tang¹⁰ and B. E. Law¹¹

N deposition retards below-ground C cycling in forests: evidence, underlying mechanisms and relevance

Introduction (2)

PhD on soil C in a highly eutrophied & acidified forest where SR < litter fall

Galloway et al., 2004