

Simulate soil C and N fluxes incorporating leguminous N fixation in agricultural systems

Lianhai Wu

Rothamsted Research, North Wyke Okehampton, EX20 2SB Email: lianhai.wu@rothamsted.ac.uk

Outlines of presentation

- SPACSYS model
- Two case studies
 - Intercropping system
 - N fixation of field pea
- General discussions

Questions to be addressed

Requirement of future farming systems - crop rotation

- Meet crop nutritional demands
- Minimise environmental impact
- Control weed, pest and disease

How to design a rotation in an effective way?

Legume crops play an important role in the system, how to estimate the contribution of N fixation to soil C and N?

How does a leguminous crop affect C and N fluxes in an agro-ecosystem?

.

SPACSYS model

- Developed over 10 years & on-going improvement
- Mixed dimensional, multi-layer, weather-driven, daily-time-step and process-based dynamic simulation model with:
 - plant growth and development (above and below-ground, sole and intercropped)
 - N & C cycling
 - soil water movement
 - heat transformation

SPACSYS framework

NORTH WYKE

Root development

Simulated root system of *Trifolium repens* 15 weeks after seedling transplant with SPACSYS

Ecological modelling

Interactions between components

NORTH WYKE

Factors to control leguminous N fixation

- Biological capacity
 - Potential N fixation controlled by C supply or N sink strength or O₂ supply (controversial)
 - Nodule establishment
- Environmental conditions
 - Temperature
 - Soil moisture
 - Mineral N content in root zone
- Status of above-ground

Options to estimate N fixation in the model

- Option 1
 - based on root nodule biomass (Wu & McGechan, 1999)

- Option 2
 - based on above-ground biomass (excluding grains)

more practical

General algorithm to estimate N fixation rate

 $R_{Nfix} = NFix_{max} \cdot f_T \cdot f_W \cdot f_N$

- f_T : response function to soil temperature
- f_W : response function to soil water content
- f_N : effect of available inorganic N content
- *Nfix_{max}*: maximum rate of biological N fixation

Maximum N fixation rate

For Option 1:

$$NFix_{max} = \varphi \cdot \alpha \cdot W_{root}$$

For Option 2: $NFix_{max} = \min\left(\varphi \cdot W_{aboveground}, \frac{f_{nodule} \cdot C_{root}}{c}\right)$

 φ : fixed rate/potential capacity per unit DM α : ratio of root DM and nodule DM F_{nodule} : fraction of C used for N fixation in nodules C_{root} : photosynthetic C assigned to nodulated root c: C cost per unit fixed N

Intercropping cereals with grain legumes

Examine N leaching in sole and intercropping systems

Appropriate root architecture improves resource capture & avoids N pollution

NORTH WYKE Can intercropping with complementary root systems help to reduce leaching loss?

CONFIGURATION OF SIMULATIONS

SITE: Aberdeen, Scotland (57°12"N)

MODEL CROPS: cereal grain legume 50:50 intercropped mixture RUNNING YEARS: Aug.1994 - July, 1995 Aug. 2000 - July, 2001

FERTILISER APPLICATION: No

Simulated annual nitrate leaching from different crop designs in two years with contrasting rainfall

	1994/95	2000/01
Precipitation (mm)	695	1217
Annual Nitrate Leach	ning (kg N ha	a ⁻¹)
Cereal	38.2	39.9
Grain legume	38.8	47.3
Intercrop	24.7	37.1

Simulated annual N input & plant uptake (kgN ha⁻¹) from sole crops in 1994/95

Deposition fixation mineralisation Plant uptake

Grain legume	24.2	9.5	115.5	85.2
Cereal	24.2	÷	119.3	92.8

- Cultivation of grain legumes can lead to increased nitrate leaching
- Leaching losses following incorporation of grain legumes are generally higher than from cereal crops, in part due to the lower C:N ratio of grain legume residues.
- Growing grain legumes in mixtures with cereals has the potential to reduce leaching losses, either by changing residue quality or through improved nutrient capture by roots.
- Varietal selection, especially with regard to belowground characteristics of both the grain legume and the cereal, have the potential to improve the nutrient capture of intercropped systems.

Simulate N fixation with above-ground biomass

Revisit an N fixation experiment in Risø, Denmark (1984)

Field pea cultivar		Bodil
Soil type		sandy loam
Soil mineral N in top soil layer before sowing		30 kg ha ⁻¹
Weather conditions during	Total precipitation	311mm
growing season	Average min. T	12.1°C
	Average max. T	20.3°C
N application	Fertilizer type	NO ₃ -
	Amount	25kg N ha ⁻¹

Jensen, 1987; 1996

Comparison between measured and simulated accumulated N fixation

NORTH WYKE

accumulated temperature after emergence (°C day)

Comparison between measured and simulated accumulated above-ground N

NORTH WYKE

Comparison between measured and simulated accumulated above-ground DM

Which parameters is N fixation sensitive to?

- Optimal T for fixation $(T_{fixoptl})$
- Specific leaf area (SLA)
- Potential leaf photosyn. Rate (P_{max})
- Optimal T for photosyn. (T_{optp})
- Min. T for photosyn. (T_{minp})
- Potential fixation rate (NFixpot)
- Identified four parameters: SLA, $T_{fixoptl}$, P_{max} and T_{optp}

Multiple parameters

Single

8 combinations in pair

Relative changes of N fixation at harvest with different parameter values

In prep.

Changes of simulated N fixation with SLA in different $T_{fixoptl}$ levels

In prep.

- The algorithm with aboveground DM is able to simulate dynamics of accumulated N in aboveground reasonably
- Potential fixation rate is one of the most important parameters in estimating actual rate accurately
- N fixation in Risø is very sensitive to low temperature and photosynthetic rate
- Greater green leaf cover and faster establishment in young plants and high photosynthesis would enhance N fixation

General discussions to simulate biological N fixation by legume

Difficulty of simulating legume biological N fixation In further development, it is desirable:

large variance in N fixation between sites and species, and over time

a highly complex process: integrate plant and soil processes in macro- with micro-environmental processes of *rhizobial* bacteria in nodules define the key parameter of potential N fixation rate based on nodule mass

distinguish the different inhibitory effects of soil nitrate and ammonium in the rhizosphere

Farming systems

Acknowledgements

Yanyan Liu (China Agricultural University)

Christine Watson (Scottish Agricultural College)

John Baddeley (Scottish Agricultural College)