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Abstract

Position-specific scoring matrices are useful for representing and
searching for protein sequence motifs. A sequence family can often
be described by a group of one or more motifs, and an effective search
must combine the scores for matching a sequence to each of the motifs
in the group. We describe three methods for combining match scores
and estimating the statistical significance of the combined scores and
evaluate the search quality (classification accuracy) and the accuracy
of the estimate of statistical significance of each. The three methods
are: 1) sum of scores, 2) sum of reduced variates, 3) product of score p-
values. We show that method 3) is superior to the other two methods
in both regards, and that combining motif scores indeed gives bet-
ter search accuracy. The MAST sequence homology search algorithm
utilizing the product of p-values scoring method is available for inter-
active use and downloading at URL http://www.sdsc.edu/MEME.
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1 Introduction

Protein sequence families can be characterized by one or more highly con-
served, ungapped regions herein called motifs. Family members will contain
some or all the motifs, usually with a highly conserved ordering and spacing.
Motifs correspond to structurally and functionally important regions of the
proteins. By ignoring less constrained regions of the sequences, they abstract
the most salient sequence features of the family. The description of a set of
motifs is a powerful tool for detecting distant family members (homologs)
because there are fewer chances for spurious matches between non-family
members and less conserved parts of the family member sequences. Motifs
can also elucidate the important structural and functional features of the
family and individual family members.

We describe a sequence motif using a position-specific scoring matrix
(PSSM)." Each column in the matrix corresponds to a position in the se-
quence motif. The entries in a particular column are scores to be given to
each letter in the sequence alphabet, A, and are assumed to be integer. For
a given PSSM, we calculate the match score of a sequence segment of length
w, the width of the motif, by summing the appropriate entries in the matrix.
In other words, the match score, f, of the segment beginning at position 2 in
sequence s is

w

f(s,0) = Y maipion. (1)

J=1

where s(k) is the letter at position k in the sequence, and

ma71 ma72 . mmw
mb71 mb72 . mbﬂu

M = ) S : (2)
mZJ m272 . mzw

is the position-specific scoring matrix with m,; being the score for letter
a € A at position k in the motif.

Computer algorithms exist for automatically constructing a characteris-
tic set of sequence motifs from a family of biological sequences [Bailey and

I'PSSMs can also be thought of as gapless sequence profiles [Gribskov et al., 1990].



Gribskov, 1996; Neuwald et al., 1995; Henikoff et al., 1995]. Several computer
algorithms for searching sequence databases using motifs also exist [Neuwald
et al., 1995; Tatusov et al., 1994; Henikoff, 1992]. Unfortunately, none of
the previously available motif-search programs estimate the statistical signif-
icance of simultaneous matches to multiple motif queries. The MAST (Motif
Alignment and Search Tool) algorithm [Bailey and Gribskov, 1998] used in
this paper

e accepts multiple motifs as the query,
e allows the motifs to occur in any order (or be missing) from the target,
o estimates the statistical significance of matches to the query.

This makes MAST a useful tool for the detection of distant family members
and allows the statistical validity of matches to be assessed.

The main goal of searching a sequence database with a pattern is to sort
the database according to the degree that the sequences match the pattern.
Most often, a sufficiently high degree of similarity is interpreted as evidence of
homology—common evolutionary ancestry. In other cases it can be viewed as
an indication of common function or convergent evolution. A secondary, but
desirable, goal of a sequence database search is to estimate the significance
of the observed degree of match of each sequence with the pattern. One way
of answering this question is to assert that a score is (very) significant if it is
(very) unlikely to have arisen by chance. In other words, we want to know
the p-value of score x—the probability that the score of the match of a random
sequence and the pattern would be greater than or equal to . The model for
a random sequence is usually the independence (iid) model-all positions in
the sequence have the same letter distributions and are independent of each
other.

The p-values of sequence scores can be used to sort the sequences in the
database to achieve both of the above goals. For the p-value of a score to
be well defined, we must decide whether or not to consider the length of
the sequence. Longer random sequences have higher average scores than
shorter sequences using search patterns of the types we have mentioned,
because longer sequences have more potentially matching positions. However,
if we assume that each sequence in the database is equally likely a priori to
match the pattern, then the definition of the p-value of score & becomes “the



probability that a random sequence of the same length would have score equal
to or greater than x.” Experience has shown that scores compensated for
sequence length generally sort the database more accurately, so this latter
definition used here.

2 Methods

We are interested in searching a database of target sequences for matches to
a query consisting of one or more motifs. The match of a target sequence
and the query is a function of the match scores of the sequence and each
motif. For each motif in the query, we use the single best match score for
any position in the target sequence (Eqn. 1). The best match score for each
motif is computed independently so the best matching positions for a motif
may overlap the best matching positions for other motifs.

The best match score for each motif is evidence for (or against, if the
score is low) the membership of the target sequence in the sequence family
described by the query. This evidence is combined to compute the p-value
of the combined match (combined p-value) using one of three methods. The
first method computes the p-value of the sum of the single best match scores
for each motif and the target sequence (sum of scores). The second method
separately estimates a “reduced variate” with a Gumbel limiting distribution
for the best match scores for each motif, and computes the p-value of the
sum of the reduced variates as described in Bailey and Gribskov [1997] (sum
of reduced variates). The third method calculates a separate p-value for the
best match scores of each motif and the target sequence, and then computes
the p-value of the product of those p-values (product of p-values). This
combined p-value can be used to sort the target sequences.

We show that the product of p-values approach is superior to the other
two methods in terms of accuracy and sensitivity. We measure accuracy in
terms of how well the p-values computed according to each method estimate
the true statistical significance of combined match scores. Our metric for
sensitivity is how well sequences sorted by the p-value given by each method
are separated according to known membership in the sequence family char-
acterized by the group of motifs.

With each method, we compute the p-values of the match of the query and
target sequences. This involves defining a “score combining function”, ¢, that



combines the individual best match scores for each motif and determining the
probability that a random sequence of the same length as the target would
have as “good” or better a value of ¢.?

We use the following notation. Let the target sequence, s, have length
[. The query, @), consists of n motifs defined by position-specific scoring
matrices M;, 1 <1 < n. Let the width of motif ¢ be w; and let the match
score, fi(s), for sequence s and motif ¢, be defined as the best segment score
for the sequence and the motif,

fils) = max fi(s, j), (3)
where [; = [ — w; + 1.

Each of the three methods of combining scores defines a distinct func-
tion ¢(s, Q) for which we compute the cumulative distribution function over
random sequences s of length [. For convenience of exposition, we use the
convention that the cumulative distribution function for random variable X
is Pr(X < x), rather than the more common convention of Pr(X < ). Ran-
dom sequences are formed by concatenating [ independent samples from the
alphabet, where sampling is done using the average letter distribution, b, for
a € A, observed in naturally occurring sequences. We make the simplifying
assumption that the segment scores, fi(s,j), 1 < j < l;, are independent.
Assuming the iid sequence model just described, f;(s,7) and fi(s, k) are only
independent if [j — k| > w, so this independence assumption is not strictly
true. However, we will show, this assumption introduces little error. We
also assume that the match scores fi(s), 1 < ¢ < n, are independent. This
assumption can introduce substantial error if two or more motifs in the query
are extremely similar to each other since two match scores, fi(s) and f;(s),
may correspond to the same (or overlapping) positions in the sequence. We
will show that this error can be greatly reduced by applying a simple test
to detect and remove similar motifs from the query. In what follows, we
also assume that the PSSM entries are integers and that the range of match
scores is r; < fi(s) < R;, 1 <@ < n. This requirement can always be satis-
fied (preserving any desired degree of accuracy) by scaling the entries in the

original PSSM.

2For the sum of scores and sum of reduced variates methods, good means larger values,
and for the product of p-values method, good means smaller values.



2.1 Sum of scores

The score combining function for this method is the sum of the match scores
for each of the motifs,

9(5,Q) = 3. fils). (1)

The distribution function for g(s, Q) over random sequences of length [ can
be estimated in three steps by taking advantage of the fact that the position-
specific scoring matrices are integer-valued, so the distribution functions are
discrete. This makes it possible to use iterative formulas to calculate the
distribution functions.

Step 1) Estimate C;(x), the probability of observing a match score f;(s) <
x with a random sequence of the same length as sequence s using the method
of Staden [1990].

Step 2) Estimate D;(x), the probability distribution of f;(s) using

Di(z) = Pr(fi(s) =)
o CZ(J?) — CZ(Q} + 1) Tz < R; 5
- Ci(R;) otherwise. (5)

Step 3) Estimate P(x), the cumulative distribution function for g(s, @)
using an induction formula similar to that used in step 1). Let p*~Y(z) be
the distribution function of the sum of match scores for the first £ —1 motifs.
Then, assuming all scores are independent, the probability distribution for
the sum of match scores of the first & motifs is

p®x) = Pr (é fils) = :1;)

= 3 e - D). (6)

i:Tk

To start the induction, we set pt")(z) = D;(z) because the distribution of
g(s,Q) when there is just one motif is just the distribution of the match
scores for that motif. The cumulative distribution is trivially computed by
summing the appropriate elements of p(™ ().



2.2 Sum of reduced variates

We described this method of calculating the significance of simultaneous
matches to multiple motifs in [Bailey and Gribskov, 1997] where we extended
the work of Goldstein and Waterman [1994]. The random score distribution
for a single motif is well approximated by a Gaussian extreme value (GEV)
distribution. For each motif in the query, we estimate the parameters of this
distribution using the sequences in the database being searched. We then
transform the GEV random variables into reduced variates, each of which
has a Gumbel limiting distribution [Kinnison, 1985]. The score combining
function for this method is the sum of the reduced variates, T;(s), of each of
the motifs,

9(5,Q) = Y- Tils), (7)

where T;(s) is defined below (Eqn. 11). The p-value of the sum of reduced
variates is then calculated using the formula given below for the cumulative
distribution of the sum of independent Gumbel random variables.

This method assumes that the match score of motif : and a random
sequence of length [ has a limiting distribution which is the maximum of
[; independent samples of a Gaussian random variable with mean p; and
standard deviation o;. We estimate u; and o; by fitting the curve of the
mean of a GEV to the match scores of the query and the database. Curve
fitting is done using the Levenberg-Marquardt non-linear least squares curve-
fitting algorithm [Press et al., 1986] on points (;, fi(s)) after removing points
where the match score, f;(s), is more than five sample standard deviations
larger than the average match score for sequences of the same length as s.
(Such sequences are presumed to be members of the family and, hence, not
random with respect to the motifs in the query.) The mean of the a GEV
can be approximated

Elfi(s)] = w(li) +~ya(li), (8)

where gamma is Euler’s constant 0.5772156649 ..., and u(l;) and a(l;) are



defined as®

Vo= 4o " _ln(ln(li))—l—ln(élw)
u(ly) = pi 4+ oi(y/2In(l;) NG ), (9)
and

a(li) = m (10)

The reduced variate for the match score of motif ¢ and sequence s, T;(s), is

defined as
Ti(s) = (11)

For large values of ¢(s,@) in Eqn. 7, one minus the cumulative distribution
is approximated by

Prgls, @) 2 1) % — (12)

2.3 Product of p-values

The score combining function for this method is the product of the p-values
of each of the match scores. The p-value of the match score for motif z and
sequence s, Pi(s), is defined as the probability of a random sequence of the
same length as s having a match score as good or better than the observed
match score. That is,

Bi(s) = Pr(fi(s) 2 ), (13)

where x is the observed value of the match score. The score combining
function is, therefore,

9(5,Q) = [T PAs). (14)

3Throughout this paper, In(z) is the natural logarithm of z, whereas log(x) refers to
the base-10 logarithm of z.



To calculate the p-value of this product, we assume that the P;(s) are inde-
pendent and uniform, and use the cumulative distribution function for the
product of independent, uniform random variables.

To calculate each of the p-values in the Eqn. 14, we proceed exactly as in
the first two steps of the first method. For motif 2, this yields the probability
distribution, D;(s), of the match score, f;(s). Summing D;(x) for all values
up to x gives the cumulative distribution function for the motif ¢ match
scores, P;(s), as desired.

We say that the motifs in a query are independent if for all 1 <z,5 < n,
¢ # j, match scores of random sequence s and motifs ¢ and j are independent.
Assuming motif independence, the p-values are independent and one minus
the cumulative distribution function for g(s, Q) is approximated by [Bailey
and Gribskov, 1998]

o (=Inp)
Pr(g(s,Q) 2 p) = p) (15)
=0 '
for 0 < p <1, and is zero when p is zero.* The p-value of the combined score
is trivially computed from the cumulative distribution function.

3 Results

To determine the best method of combining scores, we studied their classifi-
cation and statistical accuracies. The classification accuracy of a score com-
bining function g(s, @) is the degree to which it separates the true members
of the family described by the query from all other sequences in the database
being searched. We measure classification accuracy using the ROC5o met-
ric [Gribskov and Robinson, 1996] because it combines measurements of the
sensitivity and selectivity of a search method into a single number in a sen-
sible manner [Swets, 1988]. The statistical accuracy of each method is the
degree to which the calculated p-value estimates the true probability of a ran-
dom sequence having a combined score as good or better than the observed
combined score.

For each measurement, we used a set of 75 distinct sequence families
from the Prosite database of protein sequence families [Bairoch, 1995]. (The

*Eqn. 15 is an approximation because the match score distributions are discrete rather
than continuous, so the P;(s) are not truly uniform random variables.
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Figure 1: Classification accuracy The classification accuracy (ROCS5)
versus the number of motifs in the query for each of the three methods of
combining scores is shown. Each point represents the average result for 75
sequence families.

families chosen are listed in Bailey and Gribskov [1997]). The MEME motif
discovery program [Bailey and Elkan, 1995] was used to generate a set of five
motifs for each sequence family. This yielded a set of 75 distinct queries for
which the correct classifications are known.

To measure classification accuracy of each method, we calculated the
combined p-value of each sequence in SWISS-PROT release 28 [Bairoch, 1994].
Using the known family members for each query, we then computed the
ROC5q classification accuracy of the method. We measured how well the
score combining function utilizes the additional information in multiple-motif
queries by using only the first, first two, first three, or first four motifs for a
family as the query.

Figure 1 shows the classification for the three methods as a function of
the number of motifs in the query. The product of p-values method is clearly
superior to the other two methods, having better average classification accu-
racy for all multiple-motif queries. Surprisingly, the sum of scores method is
extremely poor at utilizing the additional information in multiple motifs. On
average, the classification accuracy of the sum of scores method is actually
worse using all five motifs than with just the first motif in the query. The
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motif CONSENSUS

number sequence
1 NYxVWxYR
2 PKNYQIWxHR
3 NxxAWxHR

Figure 2: Similar motifs in one of the 75 queries.

other two methods use the additional information to improve classification
accuracy, with an especially large boost coming from including the second
motif in the query. These two methods treat each motif as being more or less
equally important in determining the classification because they normalize
the raw scores before combining them. On the other hand, the sum of scores
method allows wider motifs to dominate the combined score. This result
suggest that classification is optimized when the contribution of each motif
to the final score is normalized to be (essentially) independent of its width.

We measured the accuracy of the p-values computed by each method
using the 75 sets of motifs and a database of pseudorandom sequences con-
taining 100,000 sequences of lengths varying uniformly from ten to 1000 char-
acters, where each position is iid with the residue frequencies of SWISS-PROT
release 31. If p-values calculated by a method are exactly correct, we expect
the fraction of sequences having a p-value less than or equal to = to be equal
to x. For each query, we calculated the combined p-value according to one of
the three methods for each of the sequences in the pseudorandom database
and plotted the negative logarithm of the fraction of sequences whose p-value
was less than or equal to various values against the negative logarithm of the
p-value. In such a plot, points lying along the line + = y indicate that the
method is correctly estimating p-values. Points above (below) the line x =y
are caused by p-values being too large (small) on average.

Each method assumes that the match scores fi(s), 1 < ¢ < n are inde-
pendent. This requirement does not strictly hold for all 75 queries because
some motifs in some queries are similar to each other. This is because some
motifs represent sub-classes of a more general motif (Figure 2). The figure
shows the consensus sequences for three motifs in one of the queries, aligned
to emphasize the positions that are most similar. Clearly, sequences that

11



7 T T T T T
sum of scores R
sum of reduced variates + N
6 product of score p-values © . &
x=y + g
&
—~ 5 | + o
g + g
‘g + g
E 4 f . c
o 4 g
[} )
> +
< ®
[0}
2 3r + .8
8 + B
=) -}
o
- 2 F 4
=)
&
8
ir @
a
0 % 1 1 1 1 1
0 1 2 3 4 5 6
-log(p-value)

Figure 3: Distribution accuracy with shuffled motifs. The distribution
of p-values predicted by each of the three methods is compared with the
observed distributions. The graph shows the negative logarithm of the ob-
served fraction of sequences with the given p-value or less versus the negative
logarithm of estimated p-value. Each point is the average of 75 experiments
where five motifs characteristic of a single protein family were used to search
a pseudorandom sequence database of 100,000 protein sequences of varying
lengths. The order of the columns in each motif was shuffled to remove
possible dependencies among motifs in a query.

match the first motif will tend to have high scores with motifs two and three
in this query.

Figure 3 shows the statistical accuracy of each of the methods with queries
containing five motifs when the order of the columns of each motif is shuffled
to reduce dependencies among the motifs in a query. Shuffling the columns of
a motif does not affect its score distribution, but tends to make similar motifs
dissimilar, reducing the dependence of match scores. Under these conditions,
the combined p-values for both the sum of scores and product of p-values
methods are accurate, lying very near the line © = y. (Compare this with the
data for “all motifs” in Figure 4 where the motif columns are not shuffled—
the combined p-values tend to overestimate the significance of the matches.)
The combined p-value computed using the sum of reduced variates method is
less accurate, showing an increasing tendency to underestimate the statistical
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significance of rare events as the observed p-value decreases.

Actual database searches must use motifs whose columns have not been
shuffled. To avoid correlated match scores, motifs which are highly similar to
another motif in the query can be removed from the query. Removing motifs
from queries will affect classification accuracy, but only very slightly as long
as at least two motifs remain, as seen in Figure 1. We used the method
of Pietrokovski [1996] to measure the correlation (similarity) between pairs
of motifs in a query. This method aligns the two motifs (without gaps) as
though they were sequences and computes the sum of the Pearson correlation
coefficients for each pair of aligned columns. The measure is defined as the
maximum of the sum over all possible alignments. It takes values from -1 to
+1, with 41 indicating that one motif is identical to or contains the other
motif.

Figure 4 shows the accuracy of the p-value estimates given by the product
of p-values method when correlated motifs at different similarity levels are
removed from the query. Fach of the curves in the figure shows the aver-
age statistical accuracy of 75 distinct queries using, respectively, all motifs,
motifs with no pairwise correlations above 0.75, and motifs with no pairwise
correlations above 0.6. This required removing only two and ten motifs, re-
spectively, from the 375 motifs in the 75 queries. Decreasing the maximum
allowable pairwise correlation clearly improves the accuracy of the computed
p-values, showing that the motif similarity metric works well in this appli-
cation. When the queries are purged of all motifs sharing correlations above
0.6 statistical accuracy is excellent, except, perhaps, for events with p-values
below 107¢ (— log(p-value) = 6).> Removing only a small fraction of the mo-
tifs in the average query (ten motifs out of 375 total) is sufficient to insure
that the p-values are reliable. It is clear from the figure that the statistical
accuracy of the product of p-values method can be increased for extremely
rare events (strong combined matches) by using a more stringent correlation
cutoff than 0.6 at a very small cost in lost classification accuracy.

We also tested the statistical accuracy of the product of p-values method
when the motifs are created by the PROTOMAT algorithm [Henikoff et al., 1995]

>This deviation from the ideal is within the precision of the experiment. Eleven pseu-
dorandom sequences with combined p-values of 10~° or less were observed in 7.5 million
trials (75 queries times 100,000 sequences). Assuming a Poisson distribution for such rare
events, there is an approximately 14% chance of observing eleven or more p-values below

1075,

13



6 T T T T T
all motifs o o
corr<0.75 + f
5L corr<0.6 o Yo °
x=y T o
E <o
= RS
S al 2
© 8
£ 3
kel g
g 3r ¥
§ =)
3 ]
)
g 27 -
)
B
1r &
2}
0 1 1 1 1 1
0 1 2 3 4 5 6
-log(p-value)

Figure 4: Distribution accuracy with correlated motifs removed
(product of p-values method). The graph shows the negative logarithm
of the observed fraction of sequences with the given p-value or less versus
the negative logarithm of estimated p-value. The points labeled “all motifs”
are each the average of 75 experiments where five motifs characteristic of a
single protein family were used to search a pseudorandom sequence database
of 100,000 protein sequences of varying lengths. The points labeled “corr
< 0.757 are each the average of the 75 experiments with motifs removed so
that all pairwise motif correlations are less than 0.75. The points labeled
“corr < 0.6” are each the average of the 75 experiments with motifs removed
so that all pairwise motif correlations are less than 0.6.

rather than MEME.® We used the 921 families of blocks in version 9.2 of
the BLOCKS database [Pietrokovski et al., 1996], which were created auto-
matically from Prosite protein families using the PROTOMAT algorithm. The
blocks were converted to position-specific scoring matrices using the blk2pssm
program (Jorja Henikoff, personal correspondence). This resulted in queries
for 921 protein families comprising between 1 and 20 motifs (average 3.65
motifs per family, and 760 queries with more than one motif).

5The output of the PROTOMAT web-server can now be sent directly to the MAST
web-server in order to search protein databases using the motifs (“blocks”) detected
by PROTOMAT. The PROTOMAT algorithm can be used via a web-server at address
http://www.blocks.fhcrc.org/blockmkr/make blocks.html.

14
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Figure 5: Distribution accuracy on BLOCKS queries (product of p-
values method). The graph shows the negative logarithm of the observed
fraction of sequences with the given p-value or less versus the negative log-
artihm of p-value. Queries, each comprising a BLOCKS version 9.2 database
family converted from block to motif format, were searched against a pseudo-
random sequence database of 100,000 protein sequences of varying lengths.
The points labeled “all motifs” are each the average of 921 queries each con-
sisting of all the motifs for a single BLOCKS 9.2 family. The points labeled
“corr < 0.6” are each the average of 921 queries formed by removing motifs
with correlations greater than 0.6 with other motifs in the same query. The
points labeled “corr < 0.5” are each the average of 921 queries formed by
removing motifs with correlations greater than 0.5.

The accuracy of the product of p-values method p-value estimate using
queries consisting of all the motifs for a family, motifs with no pairwise
correlations above 0.6 (23 highly-correlated motifs removed from 14 queries)
and motifs with no pairwise correlations above 0.5 (48 motifs removed from 27
queries) is shown in Figure 5. As in the previous test using MEME-generated
motifs (Figure 4), highly correlated motifs within a single query cause small
p-values to be underestimated. This problem can be greatly reduced by
removing any highly correlated motifs from the queries, as shown by the
improved statistical accuracy of the p-values in the two curves for queries
with correlated motifs removed. In practice, very few queries tend to need

15



2500
|

number of pairs
1000

—
r T T T T

00 04 0.8
pairwise motif correlation

0

Figure 6: Distribution of pairwise motif correlations in BLOCKS
queries. The 760 multi-motif queries in the BLOCKS datbase were exam-
ined for correlations between pairs of motifs in the same query.

such modification, as shown by the distribution of pairwise motif correlations
in all 760 multi-motif queries in the BLOCKS database (Figure 6). Virtually
all correlations between pairs of motifs in a single query are below 0.5, the
threshold above which the accuracy of the p-value estimate begins to suffer.

Even with correlated motifs removed from the queries, the estimated p-
values tend to be smaller than they should be (points below the line x = y
in Figure 5) due to small correlations among the scores for a single sequence.
The error in the p-values is quite small, however, and should not be a problem
in practice. For example, when searching a database containing 100,000
sequences with a p-value cutoff of 107, if the p-value estimates were correct
we would expect about ten random sequences (“false positives”) to score
below the cutoff. Figure 5 shows that if the query does not contain any motif-
pairs with correlations above 0.6, about 1.3 times too many p-values below
10~* will be observed on average. This corresponds to two or three additional
false positives passing the cutoff. With a stricter cutoff, for instance, a p-
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value of 107%, the curve for queries with no motif correlations above 0.6
indicates that about 2.2 times as many random sequences will have p-values
below the threshold. This is of no consequence since the expected number of
false positives if the p-value estimates were exactly correct would be 100,000
times the p-value cutoff, or 1072, With the slight inaccuracy in the p-value
estimate, the probability of a false positive is therefore still only about 0.022.
We would, therefore, not expect any false positives in practice.

4 Discussion

The objective of this research is a scoring system for comparing protein se-
quences with a description of a sequence family. Such a scoring system forms
the basis for a search algorithm which classifies sequences in a database with
respect to membership in the sequence family described in a query. It is
important that the statistics of the scoring system be known so that the
statistical significance of search results can be evaluated.

Sequence motifs are a particularly powerful means of describing protein
sequence families. However, many families are best described by groups of
motifs. The motifs typically occur with a particular ordering and (approxi-
mate) spacing, but insertion, deletion and mutation events can cause motifs
to be missing, duplicated or rearranged in some sequences of the family. For
this reason, this research studied combining the single best match score for
each motif in a query and a target sequence, without regard to the ordering
of the motifs or possible overlap of motifs. This approach results in lower
match scores if a motif in the query is missing from the target sequence, but
does not preclude such a sequence from being classified as a family member.
Similarly, multiple copies of a motif in the target sequence do not affect the
combined match score, because only the highest match score for each motif
is used in calculating the combined score.

We studied the accuracy of both classification and p-value estimates of
three different ways of combining match scores. Fach of these methods has
intuitive appeal. The “sum of scores” method is reasonable because it is a
direct extension of how individual motif scores are computed, and closely
corresponds to scores for sequence comparisons with gaps. In this method,
each column of each motif contributes a single, additive score to the combined
match score. The “sum of reduced variates” method is analogous to the sum
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statistics often used for evaluating multiple high scoring segments in pairwise
sequence comparisons |[Altschul and Gish, 1996]. Each motif contributes
a single, scaled score that are summed to form the combined score. The
“product of p-values” method treats each match score as the test statisticin a
hypothesis test of whether the motif is present in the target sequence. The p-
values of the scores are combined by multiplying them together, as suggested
by Fisher’s “omnibus” procedure for combining one-sided statistical tests
[Fisher, 1970].

Our results show that the classification accuracy of protein motif queries is
highest using the product of p-values as the combined score. Classification ac-
curacy is only slightly lower with the sum of reduced variates method, but the
accuracy of the p-value estimate is much worse. Surprisingly, both of these
methods give significantly better classification than the sum of scores method.
A possible explanation is that scaling the scores to reduced variates or p-
values makes each motif, regardless of width, have equal weight in the com-
bined score. The sum of scores method, on the other hand, gives wide motifs
more weight than narrow motifs. Judging from our results, it is clearly better
to weight all motifs equally when classifying sequences. This is interesting
in view of the fact that both the Smith-Waterman sequence alignment algo-
rithm [Smith and Waterman, 1981] and hidden Markov models [Eddy, 1995;
Krogh et al., 1994], an alternative method of describing sequence families,
use a scoring method which is closely akin to our sum of scores method.

Inaccuracies are introduced in the p-value estimate of combined scores
because we allow two motifs to match the target sequence in an overlapping
fashion. This introduces correlations in the (supposedly independent) match
scores for the individual motifs, and causes the p-values to overestimate the
significance of the combined match. However, our results show that this effect
is negligible in practice, as long as no pairs of highly correlated motifs are
present in a query, and we have presented a practical method for insuring this.
It seems unnecessary, therefore, to change the algorithm for computing the
individual match scores to preclude overlapping motifs (which would remove
the correlations). To do so would be problematic, since several assumptions
of our method would no longer hold as a result. In particular, it would no
longer be true that there are [; = [ — w; + 1 positions for a motif of width
w; in a sequence of length [ due to the non-overlap constraint. A better
approach might be to flag sequences where two or more match scores come
from overlapping positions to notify the user that the combined p-value may
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be biased.

The product of p-values method for combining motif scores emerges as
the clear choice among the three methods tested for motif-based database
searches due to its high classification accuracy, reliable p-values and ease
of computation. For this reason, the latest version of the MAST algorithm
computes scores using that method. MAST is available for downloading and
interactive use on the web at URL http://www.sdsc.edu/MEME. This soft-
ware also computes the pairwise correlations between all motifs in the query,
allowing the user to modify the query if highly similar motifs were included.
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