Terrestrial Water and Carbon Exchanges in Earth System Models

The "Missing" Seasonal Cycle

Reto Stöckli (MeteoSwiss)

reto.stoeckli@meteoswiss.ch

And many friends from NCAR, CSU, ORNL, ETHZ, FLUXNET and NASA/GSFC

Carbon Cycle: across timescales

Cadule, Friedlingstein et al. (2010)

Carbon Cycle: seasonal variability

Water Cycle: land-atmosphere coupling

Water Cycle: soil moisture memory

OBS+MODELS

$$ET(t) = ET_0 \exp\left(-\frac{t-t_0}{\lambda}\right)$$

red dots: observed memory black bars: modeled memory

Teuling et al. (2006)

3+ Generations of LSM's

Prescribed ra Hc Prescribed phenology rc rb rd g surface layer rd td deep layer

surface radiation balance

Manabe 1969

biophysical control of transpiration

Dickinson 1986 Jarvis 1976 Deardroff 1978

biochemical control of transpiration

Sellers et al. 1996 Farquhar 1980 Collatz 1991

3+ Generations of LSM's

In order to calculate land E+W fluxes a land surface model needs to realistically represent biophysics, biochemistry, soil hydrology and SL aerodynamics.

Stöckli & Vidale (2005), Theor. & Appl. Climatology

LSM Processes & Parameters

- multiple soil layers, resistances, radiative transfer
- most mechanistic models include semi-empirical parameterizations, e.g. A-gs, Farquhar (1980):

$$g_s = m \frac{A_n}{c_s} h_s p + b$$

$$g_s = f(PAR, \delta e, T, \Psi_l)$$

a) mechanistic formulations

b) parameterizations

LSM Parameters

History

- From field work over the past 30-50 years
- Gathered from literature or other models
- Classified by Plant Functional Type or LCC

Issues:

- Scalability: leaf to canopy to landscape?
- Variability: are parameters time-dependent?
- Diversity: more than 20 classes needed?

Example: CLM 3.5 PFT-dependent plant physiology parameters (2007)

eedleleaf_evergreen_temperate_tree	0.055 0.67 0.04 1. 51. 6. 0.06 0.07 0.35 0.16 0.39 0.05 0.10 0.001 0.001 0.01 7.0 2.0 0.01000 0.00125	53
needleleaf_evergreen_boreal_tree	0.055 0.67 0.04 1. 43. 6. 0.06 0.07 0.35 0.16 0.39 0.05 0.10 0.001 0.001 0.01 7.0 2.0 0.00800 0.00100) 4
needleleaf_deciduous_boreal_tree	0.055 0.67 0.04 1. 51. 6. 0.06 0.07 0.35 0.16 0.39 0.05 0.10 0.001 0.001 0.01 7.0 2.0 0.02400 0.00300) 2
broadleaf_evergreen_tropical_tree 👘	0.075 0.67 0.04 1. 75. 9. 0.06 0.10 0.45 0.16 0.39 0.05 0.25 0.001 0.001 0.10 7.0 1.0 0.01200 0.00150) 3
broadleaf_evergreen_temperate_tree 👘	0.075 0.67 0.04 1. 69. 9. 0.06 0.10 0.45 0.16 0.39 0.05 0.25 0.001 0.001 0.10 7.0 1.0 0.01200 0.00150) 3
broadleaf_deciduous_tropical_tree 👘	0.055 0.67 0.04 1. 40. 9. 0.06 0.10 0.45 0.16 0.39 0.05 0.25 0.001 0.001 0.01 6.0 2.0 0.03000 0.00400	b/2
broadleaf_deciduous_temperate_tree 👘	0.055 0.67 0.04 1. 51. 9. 0.06 0.10 0.45 0.16 0.39 0.05 0.25 0.001 0.001 0.25 6.0 2.0 0.03000 0.00400	b/2
broadleaf_deciduous_boreal_tree	0.055 0.67 0.04 1. 51. 9. 0.06 0.10 0.45 0.16 0.39 0.05 0.25 0.001 0.001 0.25 6.0 2.0 0.03000 0.00400	b/2
broadleaf_evergreen_shrub	0,120 0,68 0,04 1, 17, 9, 0,06 0,07 0,35 0,16 0,39 0,05 0,10 0,001 0,001 0,01 7,0 1,5 0,01200 0,00150) 3
broadleaf_deciduous_temperate_shrub	0,120 0,68 0,04 1, 17, 9, 0,06 0,10 0,45 0,16 0,39 0,05 0,25 0,001 0,001 0,25 7,0 1,5 0,03000 0,00400	b/2
broadleaf_deciduous_boreal_shrub	0,120 0,68 0,04 1, 33, 9, 0,06 0,10 0,45 0,16 0,39 0,05 0,25 0,001 0,001 0,25 7,0 1,5 0,03000 0,00400	b/2
c3_arctic_grass	0,120 0,68 0,04 1, 43, 9, 0,06 0,11 0,58 0,36 0,58 0,07 0,25 0,220 0,380 -0,30 11,0 2,0 0,05000 0,00000	b/2
c3_non-arctic_grass	0,120 0,68 0,04 1, 43, 9, 0,06 0,11 0,58 0,36 0,58 0,07 0,25 0,220 0,380 -0,30 11,0 2,0 0,05000 0,00000	b/2
c4_grass	0,120 0,68 0,04 0, 24, 5, 0,04 0,11 0,58 0,36 0,58 0,07 0,25 0,220 0,380 -0,30 11,0 2,0 0,05000 0,00000	b/2
corn	0,120 0,68 0,04 1, 50, 9, 0,06 0,11 0,58 0,36 0,58 0,07 0,25 0,220 0,380 -0,30 6,0 3,0 0,05000 0,00000	b/2
wheat	0,120 0,68 0,04 1, 50, 9, 0,06 0,11 0,58 0,36 0,58 0,07 0,25 0,220 0,380 -0,30 6,0 3,0 0,05000 0,00000	b/2

Local-Scale Observations

turbulent fluxes

Networks AmeriFlux AsiaFlux CARBOAFRICA CarboEurope IP ChinaFLUX Canadian CP Other KoFlux LBA OzFlux Sardinilla Proj TROPI-DRY USCCC FLUXNE Unaffiliated March 7, 2011, 523 Site

FLUXNET (Baldocchi et al. 2001)

soil processes

FLUXNET (500+ sites by 2011)

- wide range of climatic zones
- meteorological states
- R, H, LE and CO₂ fluxes
- soil moisture & soil temperature

Catchment-Scale Observations

Global-Scale Observations

Land Surface Temperature

MODIS/TERRA satellite data from July & August 2003 versus 2000-2007

Leaf area Index

Image: Stöckli et al. (2004), in Allen&Lord (2004) Nature, 432: 551-552

How to benchmark LSM's

- Test against Maximum achievable performance
 - ignore long-term "hidden" biospheric states
 - LSM's under-utilize meteorological information
- Decompose analysis into time scales
 - high-freq: turbulence scheme issues
 - long-term: ill-defined biogeochemical states

How to improve LSM's?

M. Williams et al. (2009)

Improving mechanistic processes in a land model by use of FLUXNET observations

Stöckli, R., Lawrence, D. M., Niu, G.-Y., Oleson, K. W., Thornton, P. E., Yang, Z.-L., Bonan, G. B., Denning, A. S., and Running, S. W. (2008). The use of FLUXNET in the community land model development. J. Geophysical Research-Biogeosciences, 113(G01025):doi: 10.1029/2007JG000562.

Oleson, K. W., Niu, G.-Y., Yang, Z.-L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stöckli, R., Dickinson, R. E., Bonan, G. B., and Levis, S. (2008). Improvements to the community land model and their impact on the hydrological cycle. J. Geophysical Research-Biogeosciences, 113(G01021):doi:10.1029/2007JG000563.

The Model Farm

A Satellite- and Model-based Reanalysis of Land Surface Radiation, Heat, Water and Carbon Fluxes

Reto Stöckli (reto.stoeckli@meteoswiss.ch)

The Model Farm is open source code (GNU General Public License). Some of the models and data underly individual license schemes

Model development: better physics?

Community Land Model 3.0

- dry soil layers inhibit infiltration
- decoupling of upper from lower soil layers

E.g.: addition of ground water storage

Community Land Model 3.5

- ground water storage becomes effective
- realistic physics -> stable numeric solution

Morgan Monroe State Forest (temperate)

- CLM 3.0: depressed LE and exaggerated H
- Add ground water: exaggerated spring LE
- CLM 3.5: Modify bare soil resistance

Santarem KM83 (tropical, broadleaf)

- High dynamics of terrestrial water storage needed for seasonally-dry ecosystems
- However: now we have to decrease Vc_{max} !

Impact on global vegetation distribution

Improving empirical parameters in a phenology model by use of MODIS observations

Stöckli, R., Rutishauser, T., Dragoni, D., Keefe, J. O., Thornton, P. E., Jolly, M., Lu, L., and Denning, A. S. (2008). Remote sensing data assimilation for a prognostic phenology model. J. Geophys. Res. - Biogeosciences.113 (G4), doi:10.1029/2008JG000781

Stöckli, R., T. Rutishauser, I. Baker, M. Liniger, and A. S. Denning (in press), A global reanalysis of vegetation phenology, J. Geophys. Res. - Biogeosciences, doi: 10.1029/2010JG001545

Model-based Phenology

- few known "mechanistic" processes
- global-scale parameters: unknown
- no long term observational constraint for nontemperate PFT's

Satellite-based Phenology

Data Assimilation: Best of both Worlds

Model constrained by observations

Temperate deciduous PFT's:

- spring: light+temperature; autumn: light Drought deciduous PFT's:
- vpd: good surrogate for soil moisture limitation However: Parameters only valid for respective site

A Global Reanalysis of Phenology

2.5 0.5 0.0

3.0

A posterior Global-scale parameter set

Table 3. Climate control parameters (mean and standard deviation) by pft constrained by the assimilation using 256 regions. pft abbreviations are explained in Table 2.

No.	pft	T_{min}	T_{max}	W_{min}	W_{max}	L_{min}	L_{max}
		K	K	mb	\mathbf{mb}	${ m W~m^{-2}}$	${ m W~m^{-2}}$
1	bar all	270.6 ± 0.7	290.9 ± 0.8	12.5 ± 0.7	23.6 ± 0.4	102.7 ± 10.3	149.4 ± 6.5
2	enf tem	263.1 ± 0.5	276.4 ± 0.3	6.9 ± 0.3	47.9 ± 1.3	$\textbf{-68.3} \pm \textbf{7.3}$	216.7 ± 2.5
3	enf bor	263.8 ± 0.6	290.0 ± 0.7	7.6 ± 0.4	21.4 ± 2.4	$\textbf{-82.8} \pm 10.0$	197.4 ± 4.4
4	dnf bor	262.2 ± 0.9	275.6 ± 0.7	18.8 ± 3.0	27.9 ± 3.8	103.9 ± 5.9	208.0 ± 2.7
5	ebf tro	271.3 ± 1.8	292.8 ± 0.3	21.9 ± 0.6	-1.4 \pm 2.2	82.3 ± 9.4	168.9 ± 2.6
6	ebf tem	259.1 ± 1.0	285.9 ± 0.3	10.1 ± 0.4	20.9 ± 3.0	14.1 ± 10.7	35.0 ± 6.0
7	dbf tro	278.0 ± 0.4	299.1 ± 0.1	9.9 ± 0.2	43.9 ± 0.6	44.0 ± 13.8	81.4 ± 7.6
8	dbf tem	269.7 ± 0.3	291.5 ± 0.2	5.1 ± 0.2	25.4 ± 0.3	44.3 ± 3.9	203.0 ± 1.8
9	dbf bor	271.0 ± 0.6	279.8 ± 0.3	7.0 ± 1.0	46.9 ± 3.5	110.1 ± 3.7	223.4 ± 2.2
10	ebs all	265.5 ± 2.2	281.7 ± 0.8	3.4 ± 0.7	14.4 ± 0.4	-7.0 ± 7.1	242.4 ± 6.0
11	dbs tem	256.9 ± 0.6	298.0 ± 0.2	1.6 ± 0.4	44.5 ± 0.5	-4.7 ± 9.2	69.3 ± 3.8
12	dbs bor	273.5 ± 0.3	287.8 ± 0.5	17.5 ± 1.0	11.7 ± 2.9	60.8 ± 11.2	68.0 ± 8.1
13	c3g arc	267.8 ± 0.4	282.0 ± 0.4	2.3 ± 0.3	13.5 ± 0.5	19.9 ± 7.1	198.2 ± 3.2
14	c3g nar	267.1 ± 0.2	298.2 ± 0.5	1.5 ± 0.2	15.4 ± 0.1	$\textbf{-21.4}\pm6.6$	63.0 ± 3.3
15	c4g all	268.6 ± 0.4	279.2 ± 0.3	4.1 ± 0.2	23.3 ± 0.2	-9.0 ± 5.1	217.7 ± 1.4

Minimize PFT-dependent phenology parameter uncertainty

- less than 1% of global MODIS observations used (QA-screening)
- global LAI prediction error: $2.3 \rightarrow 0.3 \text{ m}^2 \text{ m}^{-2}$
- result: model (1), FPAR+LAI data set (2), parameter set by pft (3)

Experiments to estimate physiological parameters with FLUXNET data

- V_{cmax}, root parameters, decomposition parameterizations etc.
- Richardson et al. (2010), Knorr et al. (2010), Pettijohn et al. (20xx)

Summary

We simulate decadal-centennial carbon-climate interactions, but with often unrealistic seasonal cycle of the terrestrial water and carbon fluxes

- FLUXNET: the "reality check" for LSM development
 - How are CLIMMANI & INTERFACE linked to FLUXNET?
 - User requirements known from global modelers?

Many biophysical parameters estimated by satellite data

- How can CLIMMANI & INTERFACE help to re-define global biogeochemistry parameters in models?
- Are current parameters valid for Climate Change?

The Future of Carbon Cycle Modeling: Data Assimilation. Not just for NWP, but for Climate!

→ Please make use of: http://phenoanalysis.sourceforge.net & Model Farm

→ Good reading: Rayner, P. J. (2010), The current state of carbon-cycle data assimilation, Current Opin. Environ. Sustain., 2(4), 289–296, doi:10.1016/j.cosust.2010.05.005.